特征值分解与奇异值分解

1.特征值分解(谱分解)

A = Q Λ Q H { Q = [ u 1 ⃗ u 2 ⃗ ⋯ u M ⃗ ] Λ = d i a g { λ 1 , λ 2 , ⋯   , λ M } \begin{align} &A=Q\Lambda Q^H\\ &\left\{ \begin{aligned} Q&=\begin{bmatrix} \vec{u_1} &\vec{u_2} &\cdots&\vec{u_M} \end{bmatrix}\\ \Lambda&=diag\{\lambda_1,\lambda_2,\cdots,\lambda_M\} \end{aligned} \right. \end{align} A=QΛQH{QΛ=[u1 u2 uM ]=diag{λ1,λ2,,λM}

2.奇异值分解

A L × M = Y L × L [ Σ K × K 0 K × ( M − K ) 0 ( L − K ) × K 0 ( L − K ) × ( M − K ) ] X M × M H { X = [ x 1 ⃗ x 2 ⃗ ⋯ x M ⃗ ] Y = [ y 1 ⃗ y 2 ⃗ ⋯ y M ⃗ ] Σ = d i a g { σ 1 , σ 2 , ⋯   , σ M } \begin{align} &A_{L\times M}=Y_{L\times L} \begin{bmatrix} \Sigma_{K\times K } & 0_{K\times (M-K)}\\ 0_{(L-K)\times K}& 0_{(L-K)\times (M-K)} \end{bmatrix} X_{M\times M}^H \\ &\left\{ \begin{aligned} X&=\begin{bmatrix} \vec{x_1} &\vec{x_2} &\cdots&\vec{x_M} \end{bmatrix}\\ Y&=\begin{bmatrix} \vec{y_1} &\vec{y_2} &\cdots&\vec{y_M} \end{bmatrix}\\ \Sigma&=diag\{\sigma_1,\sigma_2,\cdots,\sigma_M\} \end{aligned} \right. \end{align} AL×M=YL×L[ΣK×K0(LK)×K0K×(MK)0(LK)×(MK)]XM×MH XYΣ=[x1 x2 xM ]=[y1 y2 yM ]=diag{σ1,σ2,,σM}

3.特征值分解与奇异值分解关系

{ A H A = X [ Σ 2 0 K × ( M − K ) 0 ( M − K ) × K 0 ( M − K ) × ( M − K ) ] X H A A H = Y [ Σ 2 0 K × ( L − K ) 0 ( L − K ) × K 0 ( L − K ) × ( L − K ) ] Y H \begin{align} \left\{ \begin{aligned} A^HA&=X \begin{bmatrix} \Sigma^2 & 0_{K\times (M-K)}\\ 0_{(M-K)\times K}& 0_{(M-K)\times (M-K)} \end{bmatrix} X^H \\ AA^H&=Y \begin{bmatrix} \Sigma^2 & 0_{K\times (L-K)}\\ 0_{(L-K)\times K}& 0_{(L-K)\times (L-K)} \end{bmatrix} Y^H \\ \end{aligned} \right. \end{align} AHAAAH=X[Σ20(MK)×K0K×(MK)0(MK)×(MK)]XH=Y[Σ20(LK)×K0K×(LK)0(LK)×(LK)]YH

(1)特征值与奇异值

A H A A^HA AHA A A H AA^H AAH非零特征值等于 A L × M A_{L\times M} AL×M的非零奇异值的平方:
Λ = Σ 2 \Lambda = \Sigma ^2 Λ=Σ2

(2)特征向量与奇异向量

左奇异向量矩阵 Y Y Y A A H AA^H AAH的特征向量矩阵
左奇异向量矩阵 X X X A H A A^HA AHA的特征向量矩阵

你可能感兴趣的:(现代信号处理,线性代数,算法,矩阵)