变限积分求导习题

前置知识:变限积分求导

习题1

已知 F ( x ) = ∫ x 2 x sin ⁡ t 2 d t F(x)=\int_x^{2x}\sin t^2dt F(x)=x2xsint2dt,求 F ′ ( x ) F'(x) F(x)

解:
F ′ ( x ) = sin ⁡ ( 4 x 2 ) ⋅ 2 − sin ⁡ ( x 2 ) = 2 sin ⁡ ( 4 x 2 ) − sin ⁡ ( x 2 ) \qquad F'(x)=\sin(4x^2)\cdot 2-\sin(x^2)=2\sin(4x^2)-\sin(x^2) F(x)=sin(4x2)2sin(x2)=2sin(4x2)sin(x2)


习题2

已知函数 f ( x ) f(x) f(x)连续, F ( x ) = ∫ 2 x x 2 f ( x ) d x F(x)=\int_{2x}^{x^2}f(x)dx F(x)=2xx2f(x)dx,求 F ′ ( x ) F'(x) F(x)

解:
\qquad 原式 = f ( x 2 ) ⋅ 2 x − f ( 2 x ) ⋅ 2 = 2 x f ( x 2 ) − 2 f ( 2 x ) =f(x^2)\cdot 2x-f(2x)\cdot 2=2xf(x^2)-2f(2x) =f(x2)2xf(2x)2=2xf(x2)2f(2x)


习题3

已知 F ( x ) = x 2 ∫ e x ln ⁡ t d t F(x)=x^2\int_e^x\ln tdt F(x)=x2exlntdt,求 f ′ ( e ) f'(e) f(e)

解:
F ′ ( x ) = 2 x ∫ e x ln ⁡ t d t + x 2 ln ⁡ x \qquad F'(x)=2x\int_e^x\ln tdt+x^2\ln x F(x)=2xexlntdt+x2lnx

F ′ ( e ) = 2 x ⋅ 0 + e 2 ⋅ 1 = e 2 \qquad F'(e)=2x\cdot 0+e^2\cdot 1=e^2 F(e)=2x0+e21=e2


习题4

计算 lim ⁡ x → 0 x − ∫ 0 x e t 2 d t x 3 \lim\limits_{x\to 0}\dfrac{x-\int_0^xe^{t^2}dt}{x^3} x0limx3x0xet2dt

解:
\qquad 由洛必达法则,原式 = lim ⁡ x → 0 1 − e x 2 3 x 2 = lim ⁡ x → 0 − 2 x e x 2 6 x = − lim ⁡ x → 0 e x 2 3 = − 1 3 =\lim\limits_{x\to 0}\dfrac{1-e^{x^2}}{3x^2}=\lim\limits_{x\to 0}\dfrac{-2xe^{x^2}}{6x}=-\lim\limits_{x\to 0}\dfrac{e^{x^2}}{3}=-\dfrac 13 =x0lim3x21ex2=x0lim6x2xex2=x0lim3ex2=31

你可能感兴趣的:(数学,数学)