-- 基于Redis集群解决单机Redis存在的问题
单机的Redis存在四大问题:
Redis有两种持久化方案:
RDB持久化
AOF持久化
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。
快照文件称为RDB文件,默认是保存在当前运行目录。
RDB持久化在四种情况下会执行:
执行save命令
执行bgsave命令
Redis停机时
触发RDB条件时
1)save命令
执行下面的命令,可以立即执行一次RDB:
save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。
2)bgsave命令
下面的命令可以异步执行RDB:
这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。
3)停机时
Redis停机时会执行一次save命令,实现RDB持久化。
4)触发RDB条件
Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:
# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1
save 300 10
save 60 10000
RDB的其它配置也可以在redis.conf文件中设置:
# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes
# RDB文件名称
dbfilename dump.rdb
# 文件保存的路径目录
dir ./
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
当主进程执行读操作时,访问共享内存;
当主进程执行写操作时,则会拷贝一份数据,执行写操作。
RDB方式bgsave的基本流程?
fork主进程得到一个子进程,共享内存空间
子进程读取内存数据并写入新的RDB文件
用新RDB文件替换旧的RDB文件
RDB会在什么时候执行?save 60 1000代表什么含义?
默认是服务停止时
代表60秒内至少执行1000次修改则触发RDB
RDB的缺点?
RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
fork子进程、压缩、写出RDB文件都比较耗时
AOF全称为Append Only File(追加文件)。
Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"
AOF的命令记录的频率也可以通过redis.conf文件来配:
# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no
三种策略对比:
因为是记录命令,AOF文件会比RDB文件大的多。
而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
如图,AOF原本有三个命令,但是set num 123 和 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。
所以重写命令后,AOF文件内容就是:mset name jack num 666
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
具体搭建流程参考课前资料《Redis集群.md》:
主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:
这里有一个问题,master如何得知salve是第一次来连接呢??
有几个概念,可以作为判断依据:
Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。
因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。
master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。
master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。
因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致。
如图:
完整流程描述:
slave节点请求增量同步
master节点判断replid,发现不一致,拒绝增量同步
master将完整内存数据生成RDB,发送RDB到slave
slave清空本地数据,加载master的RDB
master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
slave执行接收到的命令,保持与master之间的同步
全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步。
什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:
那么master怎么知道slave与自己的数据差异在哪里呢?
master怎么知道slave与自己的数据差异在哪里呢?
这就要说到全量同步时的repl_baklog文件了。
这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。
随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:
直到数组被填满:
此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。
但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:
如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
主从同步可以保证主从数据的一致性,非常重要。
可以从以下几个方面来优化Redis主从就集群:
在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力
主从从架构图:
简述全量同步和增量同步区别?
全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave
什么时候执行全量同步?
slave节点第一次连接master节点时
slave节点断开时间太久,repl_baklog中的offset已经被覆盖时
什么时候执行增量同步?
slave节点断开又恢复,并且在repl_baklog中能找到offset时
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。
哨兵的结构如图:
哨兵的作用如下:
监控:Sentinel 会不断检查您的master和slave是否按预期工作
自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
最后是判断slave节点的运行id大小,越小优先级越高。
当选出一个新的master后,该如何实现切换呢?
流程如下:
sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点
Sentinel的三个作用是什么?
监控
故障转移
通知
Sentinel如何判断一个redis实例是否健康?
每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
如果大多数sentinel都认为实例主观下线,则判定服务下线
故障转移步骤有哪些?
首先选定一个slave作为新的master,执行slaveof no one
然后让所有节点都执行slaveof 新master
修改故障节点配置,添加slaveof 新master
具体搭建流程参考课前资料《Redis集群.md》:
在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。
下面,我们通过一个测试来实现RedisTemplate集成哨兵机制。
首先,我们引入课前资料提供的Demo工程:
在项目的pom文件中引入依赖:
org.springframework.boot
spring-boot-starter-data-redis
然后在配置文件application.yml中指定redis的sentinel相关信息:
spring:
redis:
sentinel:
master: mymaster
nodes:
- 192.168.150.101:27001
- 192.168.150.101:27002
- 192.168.150.101:27003
在项目的启动类中,添加一个新的bean:
@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}
这个bean中配置的就是读写策略,包括四种:
MASTER:从主节点读取
MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
REPLICA:从slave(replica)节点读取
REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
海量数据存储问题
高并发写的问题
使用分片集群可以解决上述问题,如图:
分片集群特征:
集群中有多个master,每个master保存不同数据
每个master都可以有多个slave节点
master之间通过ping监测彼此健康状态
客户端请求可以访问集群任意节点,最终都会被转发到正确节点
具体搭建流程参考课前资料《Redis集群.md》:
Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:
数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
key中不包含“{}”,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。
如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点。
到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点
Redis如何判断某个key应该在哪个实例?
将16384个插槽分配到不同的实例
根据key的有效部分计算哈希值,对16384取余
余数作为插槽,寻找插槽所在实例即可
如何将同一类数据固定的保存在同一个Redis实例?
这一类数据使用相同的有效部分,例如key都以{typeId}为前缀
redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:
比如,添加节点的命令:
需求:向集群中添加一个新的master节点,并向其中存储 num = 10
启动一个新的redis实例,端口为7004
添加7004到之前的集群,并作为一个master节点
给7004节点分配插槽,使得num这个key可以存储到7004实例
这里需要两个新的功能:
添加一个节点到集群中
将部分插槽分配到新插槽
创建一个文件夹:
mkdir 7004
拷贝配置文件:
cp redis.conf /7004
修改配置文件:
sed /s/6379/7004/g 7004/redis.conf
启动
redis-server 7004/redis.conf
添加节点的语法如下:
执行命令:
redis-cli --cluster add-node 192.168.150.101:7004 192.168.150.101:7001
通过命令查看集群状态:
redis-cli -p 7001 cluster nodes
如图,7004加入了集群,并且默认是一个master节点:
但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上
我们要将num存储到7004节点,因此需要先看看num的插槽是多少:
如上图所示,num的插槽为2765.
我们可以将0~3000的插槽从7001转移到7004,命令格式如下:
具体命令如下:
建立连接:
得到下面的反馈:
询问要移动多少个插槽,我们计划是3000个:
新的问题来了:
那个node来接收这些插槽??
显然是7004,那么7004节点的id是多少呢?
复制这个id,然后拷贝到刚才的控制台后:
这里询问,你的插槽是从哪里移动过来的?
all:代表全部,也就是三个节点各转移一部分
具体的id:目标节点的id
done:没有了
这里我们要从7001获取,因此填写7001的id:
填完后,点击done,这样插槽转移就准备好了:
确认要转移吗?输入yes:
然后,通过命令查看结果:
可以看到:
目的达成。
集群初识状态是这样的:
其中7001、7002、7003都是master,我们计划让7002宕机。
当集群中有一个master宕机会发生什么呢?
直接停止一个redis实例,例如7002:
redis-cli -p 7002 shutdown
1)首先是该实例与其它实例失去连接
2)然后是疑似宕机:
3)最后是确定下线,自动提升一个slave为新的master:
4)当7002再次启动,就会变为一个slave节点了:
利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
这种failover命令可以指定三种模式:
缺省:默认的流程,如图1~6歩
force:省略了对offset的一致性校验
takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见
案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位
步骤如下:
1)利用redis-cli连接7002这个节点
2)执行cluster failover命令
如图:
效果:
RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:
1)引入redis的starter依赖
2)配置分片集群地址
3)配置读写分离
与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:
spring:
redis:
cluster:
nodes:
- 192.168.150.101:7001
- 192.168.150.101:7002
- 192.168.150.101:7003
- 192.168.150.101:8001
- 192.168.150.101:8002
- 192.168.150.101:8003