特征提取与特征选择

一、特征选择和特征提取

特征选择(feature selection)和特征提取(Feature extraction)都属于降维(Dimension reduction)

这两者达到的效果是一样的,就是试图去减少特征数据集中的属性(或者称为特征)的数目;但是两者所采用的方式方法却不同。
特征提取的方法主要是通过属性间的关系,如组合不同的属性得到新的属性,这样就改变了原来的特征空间。
特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。

特征提取和特征选择都是从原始特征中找出最有效(同类样本的不变性、不同样本的鉴别性、对噪声的鲁棒性)的特征

特征提取:将原始特征转换为一组具有明显物理意义(Gabor、几何特征[角点、不变量]、纹理[LBP HOG])或者统计意义或核的特征

特征选择:从特征集合中挑选一组最具统计意义的特征,达到降维

二、特征提取的主要方法:

根据对图像信息处理的方法不同,特征点检测一般分为:

基于模板的方法

基于模板的方法主要是利用参数模型或模板来进行检测特征点的工作。因为需要构建各种不同的参数模型或模板,所以通常用于检测具备特定类型的特征点,计算速度一般较快。缺点是不适合用于形式比较复杂的模板。

基于边缘的方法

基于边缘的方法是把多边形的顶点,或曲率变化较大的物体边缘上的点作为特征点。因为特征点是物体边缘的集合,因此一定程度上对边缘的提取算法要求很高,如果边缘定位出现偏差,就会对检测结果造成很大的影响。

基于灰度的方法

基于灰度的方法是利用像素点灰度的局部变化来进行探测,特征点是建立在某种算法上,在该算法上灰度变化最大的像素点。可以利用微分运算来求取像素点周围灰度的导数,以此求出特征点的位置,该方法的缺点是噪声比较大。

基于空间变换的方法

基于空间变换的方法利用空间变换获取特性比较容易辨识的特征点,然后在变换空间中进行极值点的检测。通常空间分为尺度空间、频率空间、小波空间等。尺度空间是指在曲率尺度空间或在DOG尺度空间,将搜索到的绝对值最小或最大的点作为特征点。频率空间是将计算得到的局部相位或特定相位最大值当做特征点。小波变换是利用小波系数或模的局部极大值,利用最佳尺度进行极值点检测。

你可能感兴趣的:(学习笔记,机器学习,计算机视觉,深度学习)