- 前端必知必会-Vue 简介
编程岁月
vue.js前端javascript
文章目录Vue简介Vue是一个JavaScript框架为什么要学习Vue?OptionsAPI我的第一页文本插值文本插值中的JavaScript总结Vue简介Vue是一个JavaScript框架。可以使用标记将其添加到HTML页面。Vue使用指令扩展HTML属性,并使用表达式将数据绑定到HTML。Vue是一个JavaScript框架Vue是一个用JavaScript编写的前端JavaScript框
- 004-VTK用户指南--第一部分--第1章-欢迎
darlingfresher
VTK系统学习c++
欢迎来到《VTK用户指南》。VTK是一个开源的、面向对象的、用于计算机图形学、可视化和图像处理的软件系统。尽管VTK庞大且复杂,但只要你了解它的基本面向对象的设计和实现法,你就会发现我们的设计会使它易于使用。这份用户指南的目的是:帮助你学习这种设计和实现方法,并使你熟悉各种各样的、重要的VTK类。如果您阅读过这本指南的过往版本,您会注意到我们现在根据用户指南文档本身的版本号,而不是VTK的版本号来
- SpringBoot Mybatis 配置文件形式
ceaningking
SpringBootmybatisspringboot配置集成
开发环境:IDEA2022.1.4+Mybatis目录1.概述2.单独配置mybatis-config.xml2.1配置内容2.2辅助类2.3调用操作3.application.yml配置mybatis3.1配置内容3.2辅助类3.3调用操作4.结语1.概述在之前BiliBili学习SprintBoot时候,按照视频敲代码,SpringBoot集成MyBatis,是单独写了一个mybatis-co
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- 图书管理系统 Axios 源码__获取图书列表
还是鼠鼠
javascriptbootstrapajax前端
目录核心功能源码介绍1.获取图书列表技术要点适用人群本项目是一个基于HTML+Bootstrap+JavaScript+Axios开发的图书管理系统,可用于添加、编辑、删除和管理图书信息,适合前端开发者学习前端交互设计、Axios数据请求以及Bootstrap样式布局。核心功能图书列表渲染通过Axios发送GET请求获取服务器上的图书数据。渲染数据到HTML表格,展示书籍的名称、作者、出版社等信息
- python基础-推荐8个常用的Python GUI图形界面开发框架
小尤笔记
数据库pythonPython基础开发语言爬虫
在Python中,GUI(图形用户界面)开发框架为开发者提供了创建交互式应用程序的工具。以下是八款常用的PythonGUI图形界面开发框架及其简要代码讲解:CSDN大礼包:《2024年最新全套学习资料包》免费分享1.Tkinter简介:Tkinter是Python的标准GUI库,它提供了一个简单的方式来创建窗口、对话框等GUI元素。Tkinter被整合到当前所有主要操作系统的Python安装程序中
- AI在虚拟试衣中的应用:革新在线购物体验
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟试衣中的应用:革新在线购物体验关键词:虚拟试衣,增强现实,在线购物,深度学习,图像识别,人工智能,用户交互1.背景介绍1.1问题由来随着电子商务的迅猛发展,在线购物已经成为人们日常生活的一部分。然而,由于无法亲身试穿,在线购物体验在满足用户个性化需求方面仍存在诸多不足。传统的网页图片展示和文字描述难以真实传达衣物的质地、颜色和尺寸。因此,虚拟试衣技术应运而生,成为电商平台上提升用户体验的
- AI在虚拟客户服务中的应用:提供24_7支持
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟客户服务中的应用:提供24/7支持关键词:虚拟客服,自然语言处理(NLP),聊天机器人,对话系统,深度学习,用户支持,自动化1.背景介绍随着互联网和移动互联网的迅速发展,客户服务成为各大企业提升竞争力的重要环节。但传统的客服模式存在诸多痛点:人力成本高、响应时间慢、工作时间有限等。在企业面临全时用户需求和竞争压力日益加剧的当下,如何以更低的成本、更快的速度、更高效的资源利用率,持续提供优
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- 以太坊Solidity智能合约开发(一) - 合约结构
心辰说区块链
智能合约区块链
以太坊Solidity智能合约开发(一)-合约结构掌握了以太坊的一些知识体系后,作为技术开发者,首先要学习的就是以太坊智能合约的开发。我们先从学习合约的开发开始,因为后面的技术栈中,我们需要用支持与以太坊交互的编程语言与以太坊交互,与合约交互,都是基于合约的代码逻辑来的,所以,接下来我们这个系列里,我们先从学会掌握solidity智能合约开发开始。我们打开智能合约在线编辑器,编辑器的具体使用我就不
- python(scikit-learn)实现k均值聚类算法
嘿哈哈哈哈哈哈
机器学习聚类python算法机器学习人工智能
k均值聚类算法原理详解示例为链接中的例题直接调用python机器学习的库scikit-learn中k均值算法的相关方法fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotlib.pyplotaspltx=np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])#计算k均值聚类kmeans=KMeans(n_
- 【深度学习】Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,论文
XD742971636
深度学习机器学习深度学习transformer人工智能
必读文章:https://blog.csdn.net/qq_37541097/article/details/121119988SwinTransformer:HierarchicalVisionTransformerusingShiftedWindows论文:https://arxiv.org/abs/2103.14030代码:https://github.com/microsoft/Swin-
- Scikit-Learn K均值聚类
对许
#Python#人工智能与机器学习scikit-learn聚类机器学习
Scikit-LearnK均值聚类1、K均值聚类1.1、K均值聚类及原理1.2、K均值聚类的优缺点1.3、聚类与分类的区别2、Scikit-LearnK均值聚类2.1、Scikit-LearnK均值聚类API2.2、K均值聚类初体验(寻找最佳K)2.3、K均值聚类案例1、K均值聚类K-均值(K-Means)是一种聚类算法,属于无监督学习。K-Means在机器学习知识结构中的位置如下:1.1、K均值
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- LSTM 网络在强化学习中的应用
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSTM网络在强化学习中的应用关键词:LSTM、强化学习、时序依赖、长期记忆、深度Q网络、策略梯度、Actor-Critic摘要:本文深入探讨了长短期记忆(LSTM)网络在强化学习领域的应用。我们将详细介绍LSTM的核心概念、结构和工作原理,以及它如何解决传统循环神经网络面临的长期依赖问题。文章重点分析了LSTM在强化学习中的多种应用场景,包括深度Q网络、策略梯度方法和Actor-Critic架构
- 银河麒麟(arm64)环境下通过docker安装redis,并实现数据整体迁移
一醉千秋
WebGISwebdocker容器运维
银河麒麟(arm64)环境下通过docker安装redis,并实现数据整体迁移硬件配置:麒麟9006C系统环境:银河麒麟桌面版v10sp1数据库:redis7.2.5(原来存储地图矢量切片文件)-------------------------------------------------------------------------------------------------------
- 数据挖掘常用算法优缺点分析
天波烟客00
数据挖掘数据挖掘机器学习
领取机器学习视频教程:http://www.admin444.com/P-c8129a48常用的机器学习、数据挖掘方法有分类,回归,聚类,推荐,图像识别等。在实际应用中,一般都是采用启发式学习方式来实验。偏差&方差偏差:描述的是预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。偏差bias其实是模型太简单而带来的估计不准确的部分---欠拟合方差:描述的是预测值的变化范围、离散程度
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- 通过 Docker 部署 Mastodon 服务器 的教程
shelby_loo
docker服务器容器
如何使用Edu邮箱申请Azure订阅并开通免费的VPS想要免费获得Azure的VPS吗?拥有一个Edu邮箱就能让你轻松实现!Edu邮箱不仅可以帮助你申请Azure的学生订阅,还能免费使用Adobe和Notion等软件,让你的学习和工作更加便捷。如果你还没有Edu邮箱,可以参考末尾的衍生参考。在Azure100学生订阅中新建一台UbuntuVPS,并在Ubuntu下通过Docker部署Mastodo
- Python学习笔记 - 探索正则表达式对象和对象匹配
Mr数据杨
Python编程基础正则表达式python正则re
在文本处理和数据清洗任务中,正则表达式无疑是一把锋利的“瑞士军刀”。它不仅能够简洁地表达复杂的字符串匹配规则,还可以在各种编程语言中实现高效的文本处理。在Python中,re库提供了强大的正则表达式功能,允许开发者轻松进行模式匹配、数据提取、验证等操作。本教程将深入探讨Python中正则表达式的高级功能,尤其是如何使用正则表达式对象及其方法来高效处理文本。我们将详细讲解如何通过re.compile
- 因果关系推断与机器学习
hhhh106
读书笔记大数据
因果关系定义设X和Y是两个随机变量。定义X是Y的因,即因果关系X→Y存在,当且仅当Y的取值一定会随X的取值变化而发生变化。两个变量X、Y之间有相关性往往不是我们能判断它们之间有因果关系的依据。其中包括三种情况:X是Y的因、X是Y的果、X与Y有共同原因(commoncause)。对于第三种情况,我们把这种不是因果关系的相关性叫作虚假相关(spuriouscorrelation)。机器学习模型是强大的
- 【中科院1区】Matlab实现黏菌优化算法SMA-RF锂电池健康状态估计算法研究
matlab科研助手
matlab算法开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍摘要锂离子电池作为一种重要的储能器件,在电动汽车、便携式电子设备等领域发挥着至关重要的
- 【深度学习】因果推断与机器学习的高级实践 数学建模_问题根因 分析 机器学习
2401_84239830
程序员深度学习机器学习数学建模
现阶段深度学习有三大特征:数据驱动:即数据训练,将数据输入到模型中进行训练;关联学习:模型基于给定训练数据集,进行关联学习;概率输出:即最后的输出,判断这个图片有“狗“的概率是多少。以数据驱动、关联学习、概率输出为特征的深度学习存在什么问题呢?以一个简单的图片识别问题为例:识别一张图片中是否有狗。在很多预测问题中,我们拿到的数据集往往都是有偏的,比如我们拿到的数据中有80%的图片中狗都在草地上,这
- Qpython+Flask监控添加发送语音中文信息功能
eybk
flaskpython后端
对Qpython+Flask实现对小孩学习的监控-CSDN博客中html页面进行改造,利用Ajax,提交一段文字,发送到数据库,再在服务器,发送该段文件给手机端,然手机端TTS朗读出来,增加了父母监控小孩学习,自定义提醒小孩的功能。一、index.html的更改。实时**学习情况图//设置定时器,每20秒(20000毫秒)刷新一次页面setInterval(function(){location.
- 使用 Docker 部署 pSQL 服务器 的教程
shelby_loo
docker服务器容器
如何使用Edu邮箱申请Azure订阅并开通免费VPS使用Edu邮箱不仅可以申请Azure的免费订阅来开通VPS,还可以免费使用Adobe和Notion等软件,极大地提高学习和工作的效率。如果您还没有Edu邮箱,可以参考在线笔记s3.tebi.io/notes-image/edu%E7%AC%94%E8%AE%B0.pdf获取相关信息和申请方法。新建一台UbuntuVPS并通过Docker部署pSQ
- 因果推断与机器学习—因果推断入门(1)
樱花的浪漫
因果推断机器学习人工智能计算机视觉搜索引擎深度学习算法
在机器学习被广泛应用于对人类产生巨大影响的场景(如社交网络、电商、搜索引擎等)的今天,因果推断的重要性开始在机器学习社区的论文和演讲中被不断提及。图灵奖得主YoshuaBengio在对系统2(system2,这个说法来自心理学家DanielKahneman的作品,人类大脑由两套系统构成:系统1负责快速思考,做出下意识的反应;系统2则负责比较耗时的思考,如理解事物之间的因果关系)的畅想中强调,在实现
- pythonocc安装_PythonOCC开发-如何搭建开发环境和一个创建圆台例子
weixin_39884100
pythonocc安装
我本来是打算学习C++OCC的,但是感觉C++太难了,虽然OpenCasCAD里面有个MFC的例子,但是我连一个开发环境都没搭建出来。后来知道有个老外把C++OCC封装成了PythonOCC,就打算去研究一下。虽然网上百度到了资料,但是我还是慢慢摸索到处问别人,搞了两个多小时才成功的把环境搭建起来。转载出处,学习资料https://blog.csdn.net/weixin_42755384/art
- 《深度学习入门:梯度下降法全解析,小白必看!》
Lemon_wxk
深度学习
目录一、引言二、什么是梯度下降?2.1误差的计算2.2梯度的计算2.3参数更新2.4重复迭代三、梯度下降法的几种主要类型1.批量梯度下降(BatchGradientDescent)2.随机梯度下降(StochasticGradientDescent,SGD)3.小批量梯度下降(Mini-BatchGradientDescent)四、梯度下降的挑战与解决方案1.学习率的选择2.局部最小值与鞍点3.梯
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key