- 构建全栈式数据库与消息队列服务治理体系:监控、告警与组件搭配实践
喝醉酒的小白
DBAK8s数据库
目录标题分类✅一、分类总览表✅二、详细分类说明1.关系型数据库(RDBMS)2.NoSQL数据库3.分布式系统协调组件4.消息队列系统✅三、按用途分类(实战参考)✅四、开源vs商业(闭源)分类全面的监控指标分类与告警模板清单✅一、通用结构✅二、数据库系统级别详细监控项与告警模板1.MySQL/TiDB/OceanBase2.PostgreSQL/openGauss/GaussDB/KingBase
- 图像检索评价指标:mAP@k、mAP的计算
/home/liupc
11Python/DL/ML
mAP,meanAveragePrecision,平均检索精度.是图像检索领域最最常用的评价指标。一、mAP@k、mAP1.1mAP@k很多地方喜欢用这张图来解释,确实画的很好了,不过略有瑕疵,我稍微修改了一下。这张图是求mAP@10的结果。原图主要存在的问题就是,在前10张图片中,把所有的相似的结果都返回了。这样会给读者造成这样的困扰:没检索出来的但是又相似的图片怎么办??改了之后,就清晰多了。
- 【翻译】多标签分类评价指标metrices multi-label classification
surrender2u
NLP自然语言处理
翻译日期:2020-05-15翻译来源:LohithmunakalaAug28,2020MetricsforMulti-LabelClassification原地址:https://medium.com/analytics-vidhya/metrics-for-multi-label-classification-49cc5aeba1c3删减版本正文:用于多标签分类的最常见指标如下:Precisi
- 排序指标
排序指标MAP(平均准确率指标)AP@K=∑k=1KP(k)∗rel(k)∑kKrel(k)AP@K=\frac{\sum_{k=1}^{K}P(k)*rel(k)}{\sum_{k}^{K}rel(k)}AP@K=∑kKrel(k)∑k=1KP(k)∗rel(k)其中,rel(k)rel(k)rel(k)表示第k个元素是否与查询元素相关,相关为1,不想管为0。P(k)表示前k个结果的准确率。MA
- 庙算兵棋推演AI开发初探(7-神经网络训练与评估概述)
超自然祈祷
智能决策人工智能神经网络深度学习
前面我们提取了特征做了数据集、设计并实现了处理数据集的神经网络,接下来我们需要训练神经网络了,就是把数据对接好灌进去,训练后查看预测的和实际的结果是否一致——也就是训练与评估。数据解析提取数据编码为数据集设计神经网络-->>神经网络训练与评估神经网络一个重要指标是收敛,就是用可以逼近任意函数的神经网络是否可以逼近你数据集中隐含的模式。再重复一遍【特征工程】与【神经网络】的区别:前者就像人发现了牛顿
- 临床试验评价指标解析
qq_34062333
临床试验统计学
一、主要疗效终点1.1生存类终点1.1.1总生存期(OS)定义:随机至全因死亡的时间统计方法:Kaplan-Meier,Cox模型优势/局限:金标准,无测量偏倚;但需大样本长随访1.1.2无进展生存期(PFS)定义:随机至疾病进展/死亡的时间统计方法:同上优势/局限:敏感、不受后续治疗影响;但评估易受主观性干扰1.1.3客观缓解率(ORR)定义:肿瘤缩小≥30%的患者比例(RECIST标准)统计方
- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- 盲法在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、盲法分级与科学价值1.1开放标签1.1.1受盲对象无隐藏。1.1.2适用场景外科手术、器械试验等无法伪装的操作。1.1.3偏倚控制目标仅客观终点(生存率、实验室指标)。1.2单盲1.2.1受盲对象患者。1.2.2适用场景患者报告结局(PRO)为主的试验(如抑郁症)。1.2.3偏倚控制目标避免患者期望效应影响主观症状报告。1.3双盲1.3.1受盲对象患者+研究者+评估员。1.3.2适用场景药物试
- AIOps 简介与实践初探 - 智能指标异常检测
weixin_42587823
aiopsaiops
AIOps简介与实践初探-智能指标异常检测问题的根源:静态阈值的“告警疲劳”作为SRE,我们每天都在与告警作斗争。而绝大多数告警都来源于静态阈值的设定,例如:CPU使用率>80%磁盘空间500ms这种方式简单直接,但在复杂系统中,它的弊端也日益凸显:告警疲劳(AlertFatigue):为了“宁可错杀,不可放过”,阈值往往设得偏低。结果,在业务高峰期,系统正常地繁忙,告警却响个不停。久而久之,大家
- HCCDA – AI华为云人工智能开发者认证-60道单选题题库及答案_华为人工智能入门级开发者认证题库
2401_89172925
人工智能华为云华为
单选题及答案AI模型的评测指标主要分为精度指标和性能指标,以下哪一项不属于常用的性能指标?A.FPS(FramesPerSecond)B.FLOPs(Floating-pointOperationsPerSecond)C.aPs(QueryPerSecond)D.F1值Mask_Detection技能模板提供了口罩检测技能,针对每个人,若没有检测到人脸,也没有检测到口罩,则会显示什么信息?A.No
- 基于机器学习的人形机器人电池健康状态预测方法
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据机器学习机器人人工智能ai
基于机器学习的人形机器人电池健康状态预测方法:从理论到实践的系统解析关键词电池健康状态(SOH)、剩余使用寿命(RUL)、人形机器人、机器学习、时序数据建模、多模态特征融合、边缘计算部署摘要本报告系统解析基于机器学习的人形机器人电池健康状态预测方法,覆盖从理论框架到工程实现的全链路。首先界定人形机器人场景下电池健康状态的核心指标(SOH/RUL/RC),梳理从电化学模型到数据驱动方法的技术演进;其
- 微调大语言模型(生成任务),怎么评估它到底“变好”了?
茫茫人海一粒沙
语言模型人工智能自然语言处理
随着大语言模型(如GPT、LLaMA)的广泛应用,越来越多团队开始基于它们做微调,定制符合自己业务需求的模型。微调虽能让模型更贴合任务,但评估是否真的“变好”却不是简单的事。本文将系统介绍微调过程中和微调完成后,如何科学有效地评估模型效果,帮助你用对指标,做出准确判断。一、微调时的评估:关注训练过程中的模型表现1.验证集Loss(ValidationLoss)微调训练时,我们会准备一部分数据作为验
- 【向上教育】国企面试手册(OCR).pdf
㏕追忆似水年华あ
人工智能大数据算法旅游c语言
国企各省面试的形式主要是结构化面试,也有少部分单位采用无领导小组讨论的面试形式。全面了解面试形式是考生须知的重要信息之一。一、结构化面试结构化面试,也称标准化面试,是相对于传统的经验型面试而言的,是根据科学制定的评价指标,运用特定的问题、评价方法和评价标准,严格遵循特定程序,通过测评人员与被测试者进行语言交流,对被测试者进行评价的标准化过程。(一)结构化面试之三大规范1.考题规范化(1)测评要素一
- 大模型商用格局雏形初现:Tokens用量决高下,火山引擎问鼎2024
QbitAl
火山引擎人工智能
明敏发自凹非寺量子位|公众号QbitAI大模型应用落地元年,谁家业务更值得关注?Tokens使用量,正在成为最关键的衡量指标。量子位结合市场数据观察,2024下半年国内大模型商用落地日均Tokens消耗量翻了近10倍,从1000亿级规模到10000亿规模,只用了6个月,月复合增长率达到45%。其中,10-12月增长进一步提速。其中,只有1家云厂商商用Tokens日均消耗量的月均复合增长率超过60%
- AI原生应用微服务监控:Prometheus+Grafana实战
AI原生应用开发
AI-native微服务prometheusai
AI原生应用微服务监控:Prometheus+Grafana实战关键词:微服务监控、Prometheus、Grafana、AI应用、指标收集、可视化告警、云原生摘要:本文将深入探讨如何为AI原生应用构建完整的微服务监控系统。我们将从基础概念出发,详细介绍Prometheus的指标收集机制和Grafana的可视化能力,并通过实际案例展示如何搭建完整的监控解决方案。文章包含详细的配置示例、架构图解和最
- Python HTTP服务监控:Prometheus与自定义Exporter开发指南
在微服务架构中,HTTP服务的高效监控对保障系统稳定性至关重要。Prometheus作为云原生监控标杆,通过其Pull模型与灵活的指标体系,结合Python开发的自定义Exporter,可实现HTTP服务性能、可用性及业务指标的全面观测。Prometheus监控核心机制Prometheus采用时间序列数据库存储指标数据,每条数据由指标名称(如http_requests_total)、标签(如met
- SQLite3 在嵌入式系统中的应用指南
指令集诗人
sqlite3sqlite数据库嵌入式实时数据库
SQLite3在嵌入式系统中的应用指南一、嵌入式系统中SQLite3的优势SQLite3是嵌入式系统的理想数据库解决方案,具有以下核心优势:特性嵌入式系统价值典型指标轻量级适合资源受限环境库大小:500-700KB零配置无需数据库管理员开箱即用无服务器减少系统复杂性无后台进程低功耗延长电池寿命读操作:~0.001mAh高可靠性应对意外断电ACID事务保证单文件存储简化数据管理单个.db文件二、嵌入
- 机器学习模型监控警报系统设计:Prometheus+Evidently 实战教程
大熊计算机
机器学习prometheus人工智能
1.系统架构设计:从数据采集到智能告警(1)监控系统核心组件交互图预测请求监控指标告警规则通知渠道预测结果质量报告时序数据模型服务PrometheusExporterPrometheusServerAlertmanager邮件/Slack/WebhookEvidently服务可视化仪表盘图解:系统采用双引擎架构,Prometheus负责基础监控指标采集与告警触发,Evidently执行深度模型分析
- 道路交通标志检测数据集-智能地图与导航 交通监控与执法 智慧城市交通管理-2,000 张图像
cver123
数据集智慧城市人工智能目标跟踪计算机视觉目标检测
道路交通标志检测数据集已发布目标检测数据集合集(持续更新)道路交通标志检测数据集介绍数据集概览包含类别应用场景数据样本展示YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参数详解常用可选参数典型输出指标4.
- DAY 10 机器学习建模与评估
心落薄荷糖
Python训练营机器学习人工智能
知识点:1.数据集的划分2.机器学习模型建模的三行代码3.机器学习模型分类问题的评估今日代码比较多,但是难度不大,仔细看看示例代码,好好理解下这几个评估指标。作业:尝试对心脏病数据集采用机器学习模型建模和评估#一、导入库importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。impor
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- Python爬虫实战:用Tushare和Baostock爬取股票历史数据及K线图与技术指标计算
在金融数据分析和量化交易中,股票历史数据的获取是进行技术分析、回测和策略研究的第一步。传统上,投资者需要依赖付费数据服务,然而如今,借助Python强大的爬虫工具和开源数据接口,我们能够轻松地爬取免费的历史股票数据,并结合K线图与技术指标来进行深入分析。Tushare和Baostock是两个非常流行的开源金融数据接口。Tushare提供了丰富的国内外金融数据,特别是A股市场的历史数据和实时数据,而
- 什么是 QueryGPT?智能查询工具如何重塑信息检索的未来?
镜舟科技
StarRocksQueryGPT数据查询数据分析多模态交互
从客户行为数据到供应链信息,从市场趋势到内部运营指标,这些数据蕴含着巨大的商业价值。然而,数据量的激增也带来了前所未有的检索挑战:如何在海量信息中快速定位所需数据?如何确保查询结果的准确性和时效性?据统计,75%的企业正受困于低效的查询工具,这已成为阻碍企业数字化转型的关键痛点。传统的数据查询方式主要依赖SQL语句或特定的查询语言,这要求用户具备专业的编程知识和对数据结构的深入理解。即使对于数据分
- 2025 最新 【中兴通讯】投资价值分析报告
AI天才研究院
计算ai价值投资
2025.3.28最新【中兴通讯】投资价值分析报告文章目录2025.3.28最新【中兴通讯】投资价值分析报告摘要一、公司概况与行业背景1.1公司基本架构1.2战略升级路径1.3行业发展趋势通信设备市场格局(2024年)技术迭代周期二、核心竞争力分析2.1技术壁垒2.2市场优势2.3供应链能力三、财务深度解析3.1关键指标趋势(单位:亿元)3.2资产负债表亮点3.3现金流质量四、风险与机遇评估4.1
- 程序化交易系统中如何精准获取MACD、KDJ、BOLL等基础指标的值?
股票程序化交易接口
量化交易股票API接口Python股票量化交易程序化交易系统macd指标kdj指标boll指标股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>基础指标在程序化交易系统中的重要性基础指标对交易决策的指导意义MACD、KDJ、BOLL等基础指标在程序化交易系统中扮演着重要角色。MACD可以帮助判断市场的趋势和买卖信号,通过分析其快线和慢线的交叉情况,能为投资者提供入场和出场的参
- 【第15章】亿级电商平台订单系统-高可用架构设计
cherry5230
亿级流量架构设计与落地系统架构分布式架构中间件
1-1本章导学课程概述核心内容:订单系统高可用架构设计项目背景:年交易额200亿的B2B电商平台订单系统本章学习路径高可用概念解析设计原则学习七大架构设计方法论项目实战应用一、高可用核心概念定义与价值解析系统可靠性标准指标二、设计原则体系冗余设计故障自动转移服务降级策略监控预警机制三、七大高可用设计方法论<
- DPDK技术原理与架构
Linux服务器开发
C++后台开发C++开发DPDKDPDKDPDK原理网络协议VPP虚拟化
本文参考“《中国电信DPDK技术白皮书v1.0》”,DPDK技术框架可以划分为DPDK基本技术与DPDK优化技术两部分,前者指标准的DPDK数据平面开发包和I/O转发实现技术,后者是在DPDK应用过程中,为进一步提高各类用户应用程序的转发性能。中国电信DPDK技术白皮书v1.0DPDK基础—认识DPDK技术DPDK架构高清版DPDK编程指南(中文版)技术原理与架构由于采用软件转发和软件交换技术,单
- 软件架构评估:关键方法与实战指南
你一身傲骨怎能输
架构设计架构
文章摘要架构评估是软件工程中确保系统满足业务目标和非功能需求的关键环节。常见方法包括:ATAM(架构权衡分析):围绕质量属性(性能、安全等)进行场景化评估,适合复杂系统清单检查法:标准化检查表快速评估架构各维度专家评审:多角色头脑风暴发现设计盲点量化评估:通过测试验证性能等可量化指标评估流程通常分为准备、评估、输出三阶段,需多角色参与,关注典型场景分析。评估报告应包含优缺点、风险和改进建议,并跟踪
- MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码算法matlab神经网络大数据人工智能深度学习机器学习
目录MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)1项目背景介绍...1项目目标与意义...2项目挑战...3项目特点与创新...5<
- DeepSeek:开启教育测评智能化新时代
奔跑吧邓邓子
DeepSeek实战DeepSeek教育测评应用
目录一、引言二、DeepSeek技术概述2.1DeepSeek的发展历程与特点2.2工作原理与技术架构三、测评试题智能生成3.1生成原理与技术实现3.2生成试题的类型与应用场景3.3优势与面临的挑战四、学生学习评价报告4.1评价指标体系与数据来源4.2DeepSeek生成评价报告的流程与方法4.3评价报告的特点与应用价值五、教育测评系统优化5.1DeepSeek对教育测评系统的优化作用5.2实际案
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb