这是本次大赛第一次经验分享:任务理解部分
任务介绍
整体学习内容
本次组队学习的内容为:数据挖掘实践(金融风控),该内容来自 Datawhale与天池联合发起的 零基础入门数据挖掘 - 贷款违约预测 学习赛的第一场。
项目地址为:https://github.com/datawhalechina/team-learning-data-mining/tree/master/FinancialRiskControl
整体赛题要求
- 比赛要求参赛选手根据给定的数据集,建立模型,预测金融风险。
- 赛题以预测金融风险为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。
- 通过这道赛题来引导大家走进金融风控数据竞赛的世界,主要针对于于竞赛新人进行自我练习、自我提高。
本次学习内容
- 理解赛题数据和目标,清楚评分体系。
- 完成相应报名,下载数据和结果提交打卡(可提交示例结果),熟悉比赛流程
语言与开发环境
- 语言: Python
- 开发环境: Juputer Notebook
- 第三方库
- Numpy
- Pandas
- Scipy
- Matplotlib
- csv
- sklearn
- os
- 其他第三方库
数据概况
一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。 Tip:匿名特征,就是未告知数据列所属的性质的特征列。
如:本次大赛介绍了train.csv中的数据的情况
train.csv
- id 为贷款清单分配的唯一信用证标识
- loanAmnt 贷款金额
- term 贷款期限(year)
- interestRate 贷款利率
- installment 分期付款金额
- grade 贷款等级
- subGrade 贷款等级之子级
- employmentTitle 就业职称
- employmentLength 就业年限(年)
- homeOwnership 借款人在登记时提供的房屋所有权状况
- annualIncome 年收入
- verificationStatus 验证状态
- issueDate 贷款发放的月份
- purpose 借款人在贷款申请时的贷款用途类别
- postCode 借款人在贷款申请中提供的邮政编码的前3位数字
- regionCode 地区编码
- dti 债务收入比
- delinquency_2years 借款人过去2年信用档案中逾期30天以上的违约事件数
- ficoRangeLow 借款人在贷款发放时的fico所属的下限范围
- ficoRangeHigh 借款人在贷款发放时的fico所属的上限范围
- openAcc 借款人信用档案中未结信用额度的数量
- pubRec 贬损公共记录的数量
- pubRecBankruptcies 公开记录清除的数量
- revolBal 信贷周转余额合计
- revolUtil 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
- totalAcc 借款人信用档案中当前的信用额度总数
- initialListStatus 贷款的初始列表状态
- applicationType 表明贷款是个人申请还是与两个共同借款人的联合申请
- earliesCreditLine 借款人最早报告的信用额度开立的月份
- title 借款人提供的贷款名称
- policyCode 公开可用的策略代码=1新产品不公开可用的策略代码=2
- n系列匿名特征 匿名特征n0-n14,为一些贷款人行为计数特征的处理
评价指标
竞赛采用AUC作为评价指标。AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积。
AUC(Area Under Curve) AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。
附:分类算法系常见评价指标
1、混淆矩阵(Confuse Matrix)
(1)若一个实例是正类,并且被预测为正类,即为真正类TP(True Positive )
(2)若一个实例是正类,但是被预测为负类,即为假负类FN(False Negative )
(3)若一个实例是负类,但是被预测为正类,即为假正类FP(False Positive )
(4)若一个实例是负类,并且被预测为负类,即为真负类TN(True Negative )
2、准确率(Accuracy) 准确率是常用的一个评价指标,但是不适合样本不均衡的情况。
3、精确率(Precision) 又称查准率,正确预测为正样本(TP)占预测为正样本(TP+FP)的百分比。
4、召回率(Recall) 又称为查全率,正确预测为正样本(TP)占正样本(TP+FN)的百分比。
5、F1 Score 精确率和召回率是相互影响的,精确率升高则召回率下降,召回率升高则精确率下降,如果需要兼顾二者,就需要精确率、召回率的结合F1 Score。
6、P-R曲线(Precision-Recall Curve) P-R曲线是描述精确率和召回率变化的曲线
7、ROC(Receiver Operating Characteristic)
ROC空间将假正例率(FPR)定义为 X 轴,真正例率(TPR)定义为 Y 轴。
TPR:在所有实际为正例的样本中,被正确地判断为正例之比率。 FPR:在所有实际为负例的样本中,被错误地判断为正例之比率。
8、AUC(Area Under Curve) AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。
对于金融风控预测类常见的评估指标如下:
KS(Kolmogorov-Smirnov) KS统计量由两位苏联数学家A.N. Kolmogorov和N.V. Smirnov提出。在风控中,KS常用于评估模型区分度。区分度越大,说明模型的风险排序能力(ranking ability)越强。 K-S曲线与ROC曲线类似,不同在于
ROC曲线将真正例率和假正例率作为横纵轴
K-S曲线将真正例率和假正例率都作为纵轴,横轴则由选定的阈值来充当。 公式如下: KS不同代表的不同情况,一般情况KS值越大,模型的区分能力越强,但是也不是越大模型效果就越好,如果KS过大,模型可能存在异常,所以当KS值过高可能需要检查模型是否过拟合。以下为KS值对应的模型情况,但此对应不是唯一的,只代表大致趋势。
KS(%) | 好坏区分能力 |
---|---|
20以下 | 不建议采用 |
20-40 | 较好 |
41-50 | 良好 |
51-60 | 很强 |
61-75 | 非常好 |
75以上 | 过于高,疑似存在问题 |
- ROC
- AUC
代码和一些观察
import numpy as np
import pandas as pd
import scipy
import matplotlib.pyplot as plt
import csv
input_path = './'
maxrows = 1000 #试读数据的行数
这个代码块就比较套路,试读数据1000行是为了在大数据处理的时候搞清楚数据的结构,如果数据量不太大也可以不定义这个量,一般赋给pd.read_csv()的参数nrow.
train_data_head = pd.read_csv('train.csv',nrows = maxrows)
test_data_head = pd.read_csv('testA.csv',nrows = maxrows)
sample_data_head = pd.read_csv('sample_submit.csv',nrows = maxrows)
这里数据量尚可接受,就直接上全数据
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('testA.csv')
sample_data = pd.read_csv('sample_submit.csv')
个人习惯在接下来head,info,describe三部曲初步查看数据
train_data.head()
train_data.info()
train_data.describe()
可以看出还是有些缺失值需要调整,部分float64的数据可以在内存上进行优化,还能够注意到中位数,方差,标准差,四分位数等信息.
附:分类指标评价示例
## 混淆矩阵
import numpy as np
from sklearn.metrics import confusion_matrix
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('混淆矩阵:\n',confusion_matrix(y_true, y_pred))
输出:
混淆矩阵:
[[1 1]
[1 1]]
## accuracy
from sklearn.metrics import accuracy_score
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('ACC:',accuracy_score(y_true, y_pred))
输出:
ACC:0.5
## Precision,Recall,F1-score
from sklearn import metrics
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('Precision',metrics.precision_score(y_true, y_pred))
print('Recall',metrics.recall_score(y_true, y_pred))
print('F1-score:',metrics.f1_score(y_true, y_pred))
输出:
Precision 0.5
Recall 0.5
F1-score: 0.5
## P-R曲线
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
precision, recall, thresholds = precision_recall_curve(y_true, y_pred)
plt.plot(precision, recall)
输出:
## ROC曲线 本质上是FP-TP曲线
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
FPR,TPR,thresholds=roc_curve(y_true, y_pred)
plt.title('ROC')
plt.plot(FPR, TPR,'b')
plt.plot([0,1],[0,1],'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')
输出:
## AUC
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print('AUC socre:',roc_auc_score(y_true, y_scores))
输出:
AUC socre: 0.75
## KS值 在实际操作时往往使用ROC曲线配合求出KS值
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 1, 1]
FPR,TPR,thresholds=roc_curve(y_true, y_pred)
KS=abs(FPR-TPR).max()
print('KS值:',KS)
输出:
KS值: 0.5238095238095237
Reference:
数据挖掘实践(金融风控)
零基础入门数据挖掘 - 贷款违约预测 学习
项目地址