python 找出图片中的差异点,python opencv对目录下图片进行去重的技巧

使用python opencv对目录下图片进行去重的方法

版本:

平台:ubuntu 14 / I5 / 4G内存

python版本:python2.7

opencv版本:2.13.4

依赖:

如果系统没有python,则需要进行安装

sudo apt-get install python

sudo apt-get install python-dev

sudo apt-get install python-pip

sudo pip install numpy mathplotlib

sudo apt-get install libcv-dev

sudo apt-get install python-opencv

使用感知哈希算法进行图片去重

原理:对每个文件进行遍历所有进行去重,因此图片越多速度越慢,但是可以节省手动操作

感知哈希原理:

1、需要比较的图片都缩放成8*8大小的灰度图

2、获得每个图片每个像素与平均值的比较,得到指纹

3、根据指纹计算汉明距离

5、如果得出的不同的元素小于5则为相同(相似?)的图片

#!/usr/bin/python

# -*- coding: UTF-8 -*-

import cv2

import numpy as np

import os,sys,types

def cmpandremove2(path):

dirs = os.listdir(path)

dirs.sort()

if len(dirs) <= 0:

return

dict={}

for i in dirs:

prepath = path + "/" + i

preimg = cv2.imread(prepath)

if type(preimg) is types.NoneType:

continue

preresize = cv2.resize(preimg, (8,8))

pregray = cv2.cvtColor(preresize, cv2.COLOR_BGR2GRAY)

premean = cv2.mean(pregray)[0]

prearr = np.array(pregray.data)

for j in range(0,len(prearr)):

if prearr[j] >= premean:

prearr[j] = 1

else:

prearr[j] = 0

print "get", prepath

dict[i] = prearr

dictkeys = dict.keys()

dictkeys.sort()

index = 0

while True:

if index >= len(dictkeys):

break

curkey = dictkeys[index]

dellist=[]

print curkey

index2 = index

while True:

if index2 >= len(dictkeys):

break

j = dictkeys[index2]

if curkey == j:

index2 = index2 + 1

continue

arr1 = dict[curkey]

arr2 = dict[j]

diff = 0

for k in range(0,len(arr2)):

if arr1[k] != arr2[k]:

diff = diff + 1

if diff <= 5:

dellist.append(j)

index2 = index2 + 1

if len(dellist) > 0:

for j in dellist:

file = path + "/" + j

print "remove", file

os.remove(file)

dict.pop(j)

dictkeys = dict.keys()

dictkeys.sort()

index = index + 1

def cmpandremove(path):

index = 0

flag = 0

dirs = os.listdir(path)

dirs.sort()

if len(dirs) <= 0:

return 0

while True:

if index >= len(dirs):

break

prepath = path + dirs[index]

print prepath

index2 = 0

preimg = cv2.imread(prepath)

if type(preimg) is types.NoneType:

index = index + 1

continue

preresize = cv2.resize(preimg,(8,8))

pregray = cv2.cvtColor(preresize, cv2.COLOR_BGR2GRAY)

premean = cv2.mean(pregray)[0]

prearr = np.array(pregray.data)

for i in range(0,len(prearr)):

if prearr[i] >= premean:

prearr[i] = 1

else:

prearr[i] = 0

removepath = []

while True:

if index2 >= len(dirs):

break

if index2 != index:

curpath = path + dirs[index2]

#print curpath

curimg = cv2.imread(curpath)

if type(curimg) is types.NoneType:

index2 = index2 + 1

continue

curresize = cv2.resize(curimg, (8,8))

curgray = cv2.cvtColor(curresize, cv2.COLOR_BGR2GRAY)

curmean = cv2.mean(curgray)[0]

curarr = np.array(curgray.data)

for i in range(0,len(curarr)):

if curarr[i] >= curmean:

curarr[i] = 1

else:

curarr[i] = 0

diff = 0

for i in range(0,len(curarr)):

if curarr[i] != prearr[i] :

diff = diff + 1

if diff <= 5:

print 'the same'

removepath.append(curpath)

flag = 1

index2 = index2 + 1

index = index + 1

if len(removepath) > 0:

for file in removepath:

print "remove", file

os.remove(file)

dirs = os.listdir(path)

dirs.sort()

if len(dirs) <= 0:

return 0

#index = 0

return flag

def main(argv):

if len(argv) <= 1:

print "command error"

return -1

if os.path.exists(argv[1]) is False:

return -1

path = argv[1]

'''

while True:

if cmpandremove(path) == 0:

break

'''

cmpandremove(path)

return 0

if __name__ == '__main__':

main(sys.argv)

为了节省操作,遍历所有目录,把想要去重的目录遍历一遍

#!/bin/bash

indir=$1

addcount=0

function intest()

{

for file in $1/*

do

echo $file

if test -d $file

then

~/similar.py $file/

intest $file

fi

done

}

intest $indir

以上这篇使用python opencv对目录下图片进行去重的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持码农之家。

以上就是本次给大家分享的关于java的全部知识点内容总结,大家还可以在下方相关文章里找到相关文章进一步学习,感谢大家的阅读和支持。

你可能感兴趣的:(python,找出图片中的差异点)