无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)

​上期中我们讲了Yolov5的前两节环境配置及简单运行,在本期中我们带来后面两节在不同处理器下的实验数据及如何训练自己的模型。​

三、在不同处理器上的延迟与效果

为了查看Yolov5在不同设备上的延迟与效果,下面我们对Inter的i3、i5、i7三种处理器在同样的环境下做了实验

1、 Intel® Core™ i3-8145UE CPU

按照上面流程配置好环境后,打开终端输入以下指令:

cd /./Scripts/start_yolov5openvino_server.shroslaunch prometheus_detection yolov5_intel_openvino.launch

即可看到如下效果:

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第1张图片

Yolov5在i3-8代上的测试

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第2张图片

Yolov5在i3-8代上的延时

2、Intel® Core™ i5-8265U CPU

配置环境与输入指令与i3中相同,下面直接看测试效果

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第3张图片

Yolov5在i5-8代上的测试

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第4张图片

Yolov5在i5-8代上的延时

3、Intel® Core™ i7-8665UE CPU

配置环境与输入指令与i3中相同,下面直接看测试效果

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第5张图片

Yolov5在i7-8上的测试

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第6张图片

Yolov5在i7-8代上的延时

4、 11th Gen Intel® Core™ i5-1135G7 @ 2.40GHz × 8

配置环境与输入指令与i3中相同,下面直接看测试效果

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第7张图片

Yolov5在i5-11代上的测试

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第8张图片

Yolov5在i5-11代上的延时

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第9张图片

结论:从上面的实验数据来看,yolov5的帧率随着i3,i5,i7的增加而增加,随着7代,8代,9代CPU的增加而增加,随着电脑主频1.1GHz,1.6GHz,2.4GHz增加而增加。

四、训练自己的yolov5模型并部署

1. 数据标注

下载数据集标注工具,下载地址:Spire Web或者百度网盘 (密码: l9e7) ,数据集管理软件SpireImageTools:gitee地址或者github地址。

解压,打开标注软件 SpireImageTools_x.x.x.exe

首先点击Tools->Setting...,填写一个 save path (所有的标注文件都会存储在这个文件夹中)

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第10张图片

将拍摄的视频转为图像 (如果采集的是图像,则跳过这一步骤),点击 Input->Video, 选择要标注的视频。

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第11张图片

然后,点击`Tools->Video to Image`

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第12张图片

点击OK 后,等待完成,结果会存储在:

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第13张图片

打开需要标注的图像,点击菜单Input->Image Dir, 找到需要标注的图像所在文件夹 ,按Ctrl+A,全选,打开所有图像:

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第14张图片

点击菜单:Tools->Annotate Image->Box Label,开始标注图像

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第15张图片

label中填写待标注目标名称,然后将对话框拖到一边。

开始标注,在主窗口中开始标注,鼠标滚轮放大缩小图像,按住左键移动可视图像区域不断点击左键将目标框包围,使用Yolo训练时,点击2个点即可:

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第16张图片

标注时,如果点错,按鼠标右键可以取消。标注完成后,如果不满意,可以点击绿色边框(边框会变红,如下图所示),按`Delete`删除

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第17张图片

继续标注行人类别:

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第18张图片

全部标注完成后,将标注输出为Yolo格式,准备训练——在标注完成之后,按下Ctrl+o

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第19张图片

点击OK即可,需要等待转换。

注意,如下两个文件夹是我们训练Yolov5需要的

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第20张图片

2.开始训练Yolov5

在准备好scaled_imagesYolo_labels两个文件夹之后,我们就可以训练Yolov5了。首先,创建一个car_person.yaml,将其放到/Modules/object_detection_yolov5openvino/data/文件夹下。car_person.yaml的具体内容如下:

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]train: data/car_person/images/train/val: data/car_person/images/train/# number of classesnc: 2# class namesnames: ['car', 'person']

注意1car_person是自定义名称,我们这次标注的数据集仅有这2个类别。

注意2names: ['car', 'person']这里的类别顺序需要跟Yolo_categories.names里的类别顺序一致。

将训练图像与标注拷贝到对应位置

首先,在/Modules/object_detection_yolov5openvino/data/下新建一个文件夹car_person然后,在car_person下再新建2个文件夹imageslabels最后,将准备好的scaled_images拷贝到images下,并重命名为train;将准备好的Yolo_labels拷贝到labels下,并重命名为train

结合car_person.yaml里的内容,我想你应该明白上面目录结构的含义啦。

开始训练

cd /Modules/object_detection_yolov5openvino/python3 train.py --img 640 --batch 16 --epochs 5 --data data/car_person.yaml --weights weights/yolov5s.pt

无人机上仅使用CPU实时运行Yolov5(OpenVINO实现)(下篇)_第21张图片

显示以上内容说明训练成功!可以增加训练期数(`--epochs 5`)提升效果。

部署训练好的模型

刚刚训练好的模型会保存在/Modules/object_detection_yolov5openvino/runs/exp?/weights/best.pt?需根据自己的情况而定(最新训练的模型?为最大的数字),将best.pt重命名为yolov5s.pt,拷贝到/Modules/object_detection_yolov5openvino/weights/下,然后执行第部分3-5的操作进行OpenVINO部署。

你可能感兴趣的:(5G)