在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 ,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同,本文中只对unordered_map和unordered_set进行介绍。
unordered_map在线文档说明
unordered_map的接口说明:
unordered_map的构造
unordered_map的容量
unordered_map的迭代器
unordered_map的元素访问
注意:该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶中插入,如果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈希桶中,将key对应的value返回。
unordered_map的查询
注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1
unordered_map的修改操作
unordered_map的桶操作
参见unordered_set在线文档说明
在线OJ:
重复n次的元素
两个数组的交集I
存在重复元素
两句话中不常见的单词
unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( log2N),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:
插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)
例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快
对于两个数据元素的关键字 和 (i != j),有 != ,但有:Hash( ) == Hash( ),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
引起哈希冲突的一个原因可能是:哈希函数设计不够合理。 哈希函数设计原则:
哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0 到m-1之间
哈希函数计算出来的地址能均匀分布在整个空间中
哈希函数应该比较简单
常见哈希函数
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突
解决哈希冲突两种常见的方法是:闭散列和开散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入:
通过哈希函数获取待插入元素在哈希表中的位置
如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
删除
采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。
// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE};
// 注意:假如实现的哈希表中元素唯一,即key相同的元素不再进行插入
// 为了实现简单,此哈希表中我们将比较直接与元素绑定在一起
template<class K, class V>
class HashTable
{
struct Elem
{
pair<K, V> _val;
State _state;
};
public:
HashTable(size_t capacity = 3)
: _ht(capacity), _size(0)
{
for(size_t i = 0; i < capacity; ++i)
_ht[i]._state = EMPTY;
}
bool Insert(const pair<K, V>& val)
{
// 检测哈希表底层空间是否充足
// _CheckCapacity();
size_t hashAddr = HashFunc(key);
// size_t startAddr = hashAddr;
while(_ht[hashAddr]._state != EMPTY)
{
if(_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first == key)
return false;
hashAddr++;
if(hashAddr == _ht.capacity())
hashAddr = 0;
/*
// 转一圈也没有找到,注意:动态哈希表,该种情况可以不用考虑,哈希表中元素个数
到达一定的数量,哈希冲突概率会增大,需要扩容来降低哈希冲突,因此哈希表中元素是不会存满的
if(hashAddr == startAddr)
return false;
*/
}
// 插入元素
_ht[hashAddr]._state = EXIST;
_ht[hashAddr]._val = val;
_size++;
return true;
}
int Find(const K& key)
{
size_t hashAddr = HashFunc(key);
while(_ht[hashAddr]._state != EMPTY)
{
if(_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first == key)
return hashAddr;
hashAddr++;
}
return hashAddr;
}
bool Erase(const K& key)
{
int index = Find(key);
if(-1 != index)
{
_ht[index]._state = DELETE;
_size++;
return true;
}
return false;
}
size_t Size()const;
bool Empty() const;
void Swap(HashTable<K, V, HF>& ht);
private:
size_t HashFunc(const K& key)
{
return key % _ht.capacity();
}
private:
vector<Elem> _ht;
size_t _size;
};
void CheckCapacity()
{
if(_size * 10 / _ht.capacity() >= 7)
{
HashTable<K, V, HF> newHt(GetNextPrime(ht.capacity));
for(size_t i = 0; i < _ht.capacity(); ++i)
{
if(_ht[i]._state == EXIST)
newHt.Insert(_ht[i]._val);
}
Swap(newHt);
}
}
线性探测优点:实现非常简单,
线性探测缺点:**一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。**如何缓解呢?
研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。
因此:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。
开散列概念
开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
开散列实现
template<class V>
struct HashBucketNode
{
HashBucketNode(const V& data)
: _pNext(nullptr), _data(data)
{}
HashBucketNode<V>* _pNext;
V _data;
};
// 本文所实现的哈希桶中key是唯一的
template<class V>
class HashBucket
{
typedef HashBucketNode<V> Node;
typedef Node* PNode;
public:
HashBucket(size_t capacity = 3): _size(0)
{
_ht.resize(GetNextPrime(capacity), nullptr);
}
// 哈希桶中的元素不能重复
PNode* Insert(const V& data)
{
// 确认是否需要扩容。。。
// _CheckCapacity();
// 1. 计算元素所在的桶号
size_t bucketNo = HashFunc(data);
// 2. 检测该元素是否在桶中
PNode pCur = _ht[bucketNo];
while(pCur)
{
if(pCur->_data == data)
return pCur;
pCur = pCur->_pNext;
}
// 3. 插入新元素
pCur = new Node(data);
pCur->_pNext = _ht[bucketNo];
_ht[bucketNo] = pCur;
_size++;
return pCur;
}
// 删除哈希桶中为data的元素(data不会重复),返回删除元素的下一个节点
PNode* Erase(const V& data)
{
size_t bucketNo = HashFunc(data);
PNode pCur = _ht[bucketNo];
PNode pPrev = nullptr, pRet = nullptr;
while(pCur)
{
if(pCur->_data == data)
{
if(pCur == _ht[bucketNo])
_ht[bucketNo] = pCur->_pNext;
else
pPrev->_pNext = pCur->_pNext;
pRet = pCur->_pNext;
delete pCur;
_size--;
return pRet;
}
}
return nullptr;
}
PNode* Find(const V& data);
size_t Size()const;
bool Empty()const;
void Clear();
bool BucketCount()const;
void Swap(HashBucket<V, HF>& ht;
~HashBucket();
private:
size_t HashFunc(const V& data)
{
return data%_ht.capacity();
}
private:
vector<PNode*> _ht;
size_t _size; // 哈希表中有效元素的个数
};
void _CheckCapacity()
{
size_t bucketCount = BucketCount();
if(_size == bucketCount)
{
HashBucket<V, HF> newHt(bucketCount);
for(size_t bucketIdx = 0; bucketIdx < bucketCount; ++bucketIdx)
{
PNode pCur = _ht[bucketIdx];
while(pCur)
{
// 将该节点从原哈希表中拆出来
_ht[bucketIdx] = pCur->_pNext;
// 将该节点插入到新哈希表中
size_t bucketNo = newHt.HashFunc(pCur->_data);
pCur->_pNext = newHt._ht[bucketNo];
newHt._ht[bucketNo] = pCur;
pCur = _ht[bucketIdx];
}
}
newHt._size = _size;
this->Swap(newHt);
}
}
1.只能存储key为整形的元素,其他类型怎么解决?
// 哈希函数采用处留余数法,被模的key必须要为整形才可以处理,此处提供将key转化为整形的方法
// 整形数据不需要转化
template<class T>
class DefHashF
{
public:
size_t operator()(const T& val)
{
return val;
}
};
// key为字符串类型,需要将其转化为整形
class Str2Int
{
public:
size_t operator()(const string& s)
{
const char* str = s.c_str();
unsigned int seed = 131; // 31 131 1313 13131 131313
unsigned int hash = 0;
while (*str)
{
hash = hash * seed + (*str++);
}
return (hash & 0x7FFFFFFF);
}
};
// 为了实现简单,此哈希表中我们将比较直接与元素绑定在一起
template<class V, class HF>
class HashBucket
{
// ……
private:
size_t HashFunc(const V& data)
{
return HF()(data.first)%_ht.capacity();
}
};
const int PRIMECOUNT = 28;
const size_t primeList[PRIMECOUNT] =
{
53ul, 97ul, 193ul, 389ul, 769ul,
1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
1610612741ul, 3221225473ul, 4294967291ul
};
size_t GetNextPrime(size_t prime)
{
size_t i = 0;
for(; i < PRIMECOUNT; ++i)
{
if(primeList[i+1] > primeList[i])
return primeList[i+1];
}
return primeList[i];
}
模板参数列表的改造
// K:关键码类型
// V: 不同容器V的类型不同,如果是unordered_map,V代表一个键值对,如果是unordered_set,V
为 K
// KeyOfValue: 因为V的类型不同,通过value取key的方式就不同,详细见unordered_map/set的实
现
// HF: 哈希函数仿函数对象类型,哈希函数使用除留余数法,需要将Key转换为整形数字才能取模
template<class K, class V, class KeyOfValue, class HF = DefHashF<T> >
class HashBucket;
增加迭代器操作
// 为了实现简单,在哈希桶的迭代器类中需要用到hashBucket本身,
template<class K, class V, class KeyOfValue, class HF>
class HashBucket;
// 注意:因为哈希桶在底层是单链表结构,所以哈希桶的迭代器不需要--操作
template <class K, class V, class KeyOfValue, class HF>
struct HBIterator
{
typedef HashBucket<K, V, KeyOfValue, HF> HashBucket;
typedef HashBucketNode<V>* PNode;
typedef HBIterator<K, V, KeyOfValue, HF> Self;
HBIterator(PNode pNode = nullptr, HashBucket* pHt = nullptr);
Self& operator++()
{
// 当前迭代器所指节点后还有节点时直接取其下一个节点
if (_pNode->_pNext)
_pNode = _pNode->_pNext;
else
{
// 找下一个不空的桶,返回该桶中第一个节点
size_t bucketNo = _pHt->HashFunc(KeyOfValue()(_pNode->_data))+1;
for (; bucketNo < _pHt->BucketCount(); ++bucketNo)
{
if (_pNode = _pHt->_ht[bucketNo])
break;
}
}
return *this;
}
Self operator++(int);
V& operator*();
V* operator->();
bool operator==(const Self& it) const;
bool operator!=(const Self& it) const;
PNode _pNode; // 当前迭代器关联的节点
HashBucket* _pHt; // 哈希桶--主要是为了找下一个空桶时候方便
};
增加通过key获取value操作
template<class K, class V, class KeyOfValue, class HF = DefHashF<T> >
class HashBucket
{
friend HBIterator<K, V, KeyOfValue, HF>;
// ......
public:
typedef HBIterator<K, V, KeyOfValue, HF> Iterator;
//
// ...
// 迭代器
Iterator Begin()
{
size_t bucketNo = 0;
for (; bucketNo < _ht.capacity(); ++bucketNo)
{
if (_ht[bucketNo])
break;
}
if (bucketNo < _ht.capacity())
return Iterator(_ht[bucketNo], this);
else
return Iterator(nullptr, this);
}
Iterator End(){ return Iterator(nullptr, this);}
Iterator Find(const K& key);
Iterator Insert(const V& data);
Iterator Erase(const K& key);
// 为key的元素在桶中的个数
size_t Count(const K& key)
{
if(Find(key) != End())
return 1;
return 0;
}
size_t BucketCount()const{ return _ht.capacity();}
size_t BucketSize(size_t bucketNo)
{
size_t count = 0;
PNode pCur = _ht[bucketNo];
while(pCur)
{
count++;
pCur = pCur->_pNext;
}
return count;
}
// ......
};
unordered_map
// unordered_map中存储的是pair的键值对,K为key的类型,V为value的类型,HF哈希函数类型
// unordered_map在实现时,只需将hashbucket中的接口重新封装即可
template<class K, class V, class HF = DefHashF<K>>
class unordered_map
{
typedef pair<K, V> ValueType;
typedef HashBucket<K, ValueType, KeyOfValue, HF> HT;
// 通过key获取value的操作
struct KeyOfValue
{
const K& operator()(const ValueType& data)
{ return data.first;}
};
public:
typename typedef HT::Iterator iterator;
public:
unordered_map(): _ht()
{}
iterator begin(){ return _ht.Begin();}
iterator end(){ return _ht.End();}
// capacity
size_t size()const{ return _ht.Size();}
bool empty()const{return _ht.Empty();}
///
// Acess
V& operator[](const K& key)
{
return (*(_ht.InsertUnique(ValueType(key, V())).first)).second;
}
const V& operator[](const K& key)const;
//
// lookup
iterator find(const K& key){ return _ht.Find(key);}
size_t count(const K& key){ return _ht.Count(key);}
/
// modify
pair<iterator, bool> insert(const ValueType& valye)
{ return _ht.Insert(valye);}
iterator erase(iterator position)
{ return _ht.Erase(position);}
// bucket
size_t bucket_count(){ return _ht.BucketCount();}
size_t bucket_size(const K& key){ return _ht.BucketSize(key);}
private:
HT _ht;
};
面试题:
给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。
class bitset
{
public:
bitset(size_t bitCount)
: _bit((bitCount>>5)+1), _bitCount(bitCount)
{}
// 将which比特位置1
void set(size_t which)
{
if(which > _bitCount)
return;
size_t index = (which >> 5);
size_t pos = which % 32;
_bit[index] |= (1 << pos);
}
// 将which比特位置0
void reset(size_t which)
{
if(which > _bitCount)
return;
size_t index = (which >> 5);
size_t pos = which % 32;
_bit[index] &= ~(1<<pos);
}
// 检测位图中which是否为1
bool test(size_t which)
{
if(which > _bitCount)
return false;
size_t index = (which >> 5);
size_t pos = which % 32;
return _bit[index] & (1<<pos);
}
// 获取位图中比特位的总个数
size_t size()const{ return _bitCount;}
// 位图中比特为1的个数
size_t Count()const
{
int bitCnttable[256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2,
3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,
3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,
4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4,
3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,
6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,
4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,
6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5,
3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3,
4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6,
6, 7, 6, 7, 7, 8};
size_t size = _bit.size();
size_t count = 0;
for(size_t i = 0; i < size; ++i)
{
int value = _bit[i];
int j = 0;
while(j < sizeof(_bit[0]))
{
unsigned char c = value;
count += bitCntTable[c];
++j;
value >>= 8;
}
}
return count;
}
private:
vector<int> _bit;
size_t _bitCount;
};
我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的? 用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉些已经存在的记录。 如何快速查找呢?
布隆过滤器概念
布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。
布隆过滤器的插入
向布隆过滤器中插入:“baidu”
// 假设布隆过滤器中元素类型为K,每个元素对应5个哈希函数
template<class K, class KToInt1 = KeyToInt1, class KToInt2 = KeyToInt2, class KToInt3 = KeyToInt3, class KToInt4 = KeyToInt4,
class KToInt5 = KeyToInt5>
class BloomFilter
{
public:
BloomFilter(size_t size) // 布隆过滤器中元素个数
: _bmp(5*size), _size(0)
{}
bool Insert(const K& key)
{
size_t bitCount = _bmp.Size();
size_t index1 = KToInt1()(key)%bitCount;
size_t index2 = KToInt2()(key)%bitCount;
size_t index3 = KToInt3()(key)%bitCount;
size_t index4 = KToInt4()(key)%bitCount;
size_t index5 = KToInt5()(key)%bitCount;
_bmp.Set(index1); _bmp.Set(index2);_bmp.Set(index3);
_bmp.Set(index4);_bmp.Set(index5);
_size++;
}
private:
bitset _bmp;
size_t _size; // 实际元素的个数
}
布隆过滤器的查找
布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定为1。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。
bool IsInBloomFilter(const K& key)
{
size_t bitCount = _bmp.Size();
size_t index1 = KToInt1()(key)%bitCount;
if(!_bmp.Test(index1))
return false;
size_t index2 = KToInt2()(key)%bitCount;
if(!_bmp.Test(index2))
return false;
size_t index3 = KToInt3()(key)%bitCount;
if(!_bmp.Test(index3))
return false;
size_t index4 = KToInt4()(key)%bitCount;
if(!_bmp.Test(index4))
return false;
size_t index5 = KToInt5()(key)%bitCount;
if(!_bmp.Test(index5))
return false;
return true; // 有可能在
}
注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判。
比如:在布隆过滤器中查找"alibaba"时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。
布隆过滤器删除
布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。
比如:删除上图中"tencent"元素,如果直接将该元素所对应的二进制比特位置0,“baidu”元素也被删除了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。
一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。
缺陷:
布隆过滤器优点:
布隆过滤器缺陷:
海量数据解决方法