numpy 一维矩阵乘法

import numpy as np
A = np.array([[1,2],[3,4],[5,6]])  #A的shape为(3,2)
B = np.array([[7],[8]])    #B的shape为(2,1)
np.dot(A,B)               #A*B的shape为(3,2)*(2,1)为(3,1)

输出为

array([[23],
       [53],
       [83]])

import numpy as np
A = np.array([[1,2],[3,4],[5,6]])  #A的shape为(3,2)
B = np.array([7,8])    #B的shape为(2,)
np.dot(A,B)               #A*B的shape为(3,2)*(2,)为(3,),即A*B为一维数组

输出为

array([23, 53, 83])

import numpy as np
A = np.array([[1,2,3],[4,5,6]])  #A的shape为(2,3)
B = np.array([7,8])    #B的shape为(2,)
np.dot(B,A)               #B*A的shape为(2,)*(2,3)为(3,),即B*A为一维数组

输出为

array([39, 54, 69])

 python numpy中 shape(5,) 和shape(1,5) 的区别_一年又半的博客-CSDN博客

 (3,)转化为(1,3)


x = np.array([1,2,3])
print(x.shape)
y = np.array([x])
print(y.shape)

输出为

(3,)
(1, 3)

你可能感兴趣的:(python)