一个使用bert计算ppl的github项目
how-do-i-use-bertformaskedlm-or-bertmodel-to-calculate-perplexity-of-a-sentence
Chinese-BERT-wwm
对于给定的sentence,按顺序依次mask掉一个token,并计算所预测单词的nll loss,将所有的token的loss求和再取平均,最后取以自然数为底的次方即为该句话的PPL。
测试写法:
import numpy as np
import torch
import torch.nn as nn
from transformers import BertTokenizer, BertForMaskedLM
# Load pre-trained model (weights)
with torch.no_grad():
model = BertForMaskedLM.from_pretrained('hfl/chinese-bert-wwm-ext')
model.eval()
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-bert-wwm-ext')
sentence = "我不会忘记和你一起奋斗的时光。"
tokenize_input = tokenizer.tokenize(sentence)
tensor_input = torch.tensor([tokenizer.convert_tokens_to_ids(tokenize_input)])
sen_len = len(tokenize_input)
sentence_loss = 0.
for i, word in enumerate(tokenize_input):
# add mask to i-th character of the sentence
tokenize_input[i] = '[MASK]'
mask_input = torch.tensor([tokenizer.convert_tokens_to_ids(tokenize_input)])
output = model(mask_input)
prediction_scores = output[0]
softmax = nn.Softmax(dim=0)
ps = softmax(prediction_scores[0, i]).log()
word_loss = ps[tensor_input[0, i]]
sentence_loss += word_loss.item()
tokenize_input[i] = word
ppl = np.exp(-sentence_loss/sen_len)
print(ppl)
tensor思维的写法:
def score(model, tokenizer, sentence, mask_token_id=103):
tensor_input = tokenizer.encode(sentence, return_tensors='pt')
repeat_input = tensor_input.repeat(tensor_input.size(-1)-2, 1)
mask = torch.ones(tensor_input.size(-1) - 1).diag(1)[:-2]
masked_input = repeat_input.masked_fill(mask == 1, 103)
labels = repeat_input.masked_fill( masked_input != 103, -100)
loss,_ = model(masked_input, masked_lm_labels=labels)
result = np.exp(loss.item())
return result
s = score(model, tokenizer, '我不会忘记和你一起奋斗的时光。')
print(s)
GPT2-Chinese
官方的gpt-2不支持中文,且是BPE分词方式。对于中文,有NLPer训练出了中文的gpt-2模型,且分词采用的是bert tokenizer的分词方式。
对于给定的sentence,若其长度为n,首先将其向左偏移一位作为label,将其去除末位作为input,将gpt-2的输出与label求cross entroy loss,再求以自然数为底的次方即为该句话的PPL。
import torch
from transformers import BertTokenizer, GPT2LMHeadModel
from torch.nn import CrossEntropyLoss
def cal_ppl_bygpt2():
sens = ["今天是个好日子。", "天今子日。个是好", "这个婴儿有900000克呢。", "我不会忘记和你一起奋斗的时光。",
"我不会记忘和你一起奋斗的时光。", "会我记忘和你斗起一奋的时光。"]
tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-cluecorpussmall")
model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-cluecorpussmall")
inputs = tokenizer(sens, padding='max_length', max_length=50, truncation=True, return_tensors="pt")
bs, sl = inputs['input_ids'].size()
outputs = model(**inputs, labels=inputs['input_ids'])
logits = outputs[1]
# Shift so that tokens < n predict n
shift_logits = logits[:, :-1, :].contiguous()
shift_labels = inputs['input_ids'][:, 1:].contiguous()
shift_attentions = inputs['attention_mask'][:, 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=0, reduction="none")
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)).detach().reshape(bs, -1)
meanloss = loss.sum(1) / shift_attentions.sum(1)
ppl = torch.exp(meanloss).numpy().tolist()
return ppl
if __name__ == '__main__':
cal_ppl_bygpt2()