参考:https://segmentfault.com/a/1190000020109354
frameworks/av/services/audiopolicy/managerdefault/AudioPolicyManager.cpp 的源码:
AudioPolicyManager::AudioPolicyManager(AudioPolicyClientInterface *clientInterface): AudioPolicyManager(clientInterface, false /*forTesting*/)
{
loadConfig();
initialize();
}
void AudioPolicyManager::loadConfig() {
//Android7.0之后便使用此宏
#ifdef USE_XML_AUDIO_POLICY_CONF
if (deserializeAudioPolicyXmlConfig(getConfig()) != NO_ERROR) {
#else
if ((ConfigParsingUtils::loadConfig(AUDIO_POLICY_VENDOR_CONFIG_FILE, getConfig()) != NO_ERROR)
&& (ConfigParsingUtils::loadConfig(AUDIO_POLICY_CONFIG_FILE, getConfig()) != NO_ERROR)) {
#endif
ALOGE("could not load audio policy configuration file, setting defaults");
getConfig().setDefault();
}
}
Android 7之后,通过配置文件USE_XML_AUDIO_POLICY_CONF来控制是使用XML配置的策略文件还是使用传统旧config配置文件。这个变量的初始化可以通过配置文件device.mk进行选择。
deserializeAudioPolicyXmlConfig函数的参数getConfig()即AudioPolicyConfig。getConfig()得到的AudioPolicyConfig mConfig成员变量如下:
AudioPolicyConfig& getConfig() { return mConfig; }
mConfig(mHwModulesAll, mAvailableOutputDevices, mAvailableInputDevices, mDefaultOutputDevice,
static_cast<VolumeCurvesCollection*>(mVolumeCurves.get()))
这些成员变量在解析配置文件(XML格式或者config格式)会得到初始化,这点很重要,后续的so加载会根据配置的module name来进行加载。
#define AUDIO_POLICY_XML_CONFIG_FILE_NAME "audio_policy_configuration.xml"
//xml存放在固件的路径,优先级:/odm/etc > /vendor/etc > /system/etc
static const char *kConfigLocationList[] =
{"/odm/etc", "/vendor/etc", "/system/etc"};
static const int kConfigLocationListSize =
(sizeof(kConfigLocationList) / sizeof(kConfigLocationList[0]));
static status_t deserializeAudioPolicyXmlConfig(AudioPolicyConfig &config) {
char audioPolicyXmlConfigFile[AUDIO_POLICY_XML_CONFIG_FILE_PATH_MAX_LENGTH];
std::vector<const char*> fileNames;
status_t ret;
//文件名"audio_policy_configuration.xml"位于frameworks/av/services/audiopolicy/config/下。
fileNames.push_back(AUDIO_POLICY_XML_CONFIG_FILE_NAME);
for (const char* fileName : fileNames) {
for (int i = 0; i < kConfigLocationListSize; i++) {
PolicySerializer serializer;
snprintf(audioPolicyXmlConfigFile, sizeof(audioPolicyXmlConfigFile),
"%s/%s", kConfigLocationList[i], fileName);
ret = serializer.deserialize(audioPolicyXmlConfigFile, config);
if (ret == NO_ERROR) {
return ret;
}
}
}
return ret;
}
今天要说的重点就是这个for循环了,serializer.deserialize(audioPolicyXmlConfigFile, config)
先看下PolicySerializer位于/frameworks/av/services/audiopolicy/common/managerdefinitions/include/目录下
以下举例的所有标签均来自audio_policy_configuration.xml下对应的第一行标签
status_t PolicySerializer::deserialize(const char *configFile, AudioPolicyConfig &config)
{
xmlDocPtr doc;
doc = xmlParseFile(configFile);
if (doc == NULL) {
ALOGE("%s: Could not parse %s document.", __FUNCTION__, configFile);
return BAD_VALUE;
}
......
//上面都是解析校验xml的一些属性标签啥的,此处开始才是正式加载,首先是module的加载
// Lets deserialize children
// Modules
ModuleTraits::Collection modules;
deserializeCollection<ModuleTraits>(doc, cur, modules, &config);
config.setHwModules(modules);
// deserialize volume section
VolumeTraits::Collection volumes;
deserializeCollection<VolumeTraits>(doc, cur, volumes, &config);
config.setVolumes(volumes);
// Global Configuration
GlobalConfigTraits::deserialize(cur, config);
xmlFreeDoc(doc);
return android::OK;
}
其中这两行代码便开始了真正的解析
deserializeCollection<ModuleTraits>(doc, cur, modules, &config);
config.setHwModules(modules);
deserializeCollection是个通用方法,其目的是调用泛型类的deserialize()方法,比如上面将调用ModuleTraits::deserialize()。
const char *const ModuleTraits::childAttachedDevicesTag = "attachedDevices";
const char *const ModuleTraits::childAttachedDeviceTag = "item";
const char *const ModuleTraits::childDefaultOutputDeviceTag = "defaultOutputDevice";
const char *const ModuleTraits::tag = "module";
const char *const ModuleTraits::collectionTag = "modules";
const char ModuleTraits::Attributes::name[] = "name";
const char ModuleTraits::Attributes::version[] = "halVersion";
status_t ModuleTraits::deserialize(xmlDocPtr doc, const xmlNode *root, PtrElement &module,
PtrSerializingCtx ctx)
{
//解析modules下的module标签,我们可以看下configuration.xml下module的name是primary
string name = getXmlAttribute(root, Attributes::name);
if (name.empty()) {
ALOGE("%s: No %s found", __FUNCTION__, Attributes::name);
return BAD_VALUE;
}
uint32_t versionMajor = 0, versionMinor = 0;
string versionLiteral = getXmlAttribute(root, Attributes::version);
if (!versionLiteral.empty()) {
sscanf(versionLiteral.c_str(), "%u.%u", &versionMajor, &versionMinor);
ALOGV("%s: mHalVersion = major %u minor %u", __FUNCTION__,
versionMajor, versionMajor);
}
ALOGV("%s: %s %s=%s", __FUNCTION__, tag, Attributes::name, name.c_str());
//其实就是把里的name和halVersion解析并初始化给了HwModule
module = new Element(name.c_str(), versionMajor, versionMinor);
// Deserialize childrens: Audio Mix Port, Audio Device Ports (Source/Sink), Audio Routes
MixPortTraits::Collection mixPorts;
//我们可以看到module下有 标签,其实也是按着这个顺序解析及的。
//到这里多少明白了一些audio_policy_configuration.xml的解析,那么解析完的数据又是如何初始化的呢?
//开始解析 标签下东西,调用MixPortTraits::deserialize(),下文继续讲。
deserializeCollection<MixPortTraits>(doc, root, mixPorts, NULL);
//moudle即HwModule,将解析的mixPorts(IOProfiles)存储给module的setProfiles
module->setProfiles(mixPorts); //调用HwModule::setProfiles()
//解析标签,解析原理都相同就不再细说了,只说下每个标签解析完都做了什么。
DevicePortTraits::Collection devicePorts;
//调用DevicePortTraits::deserialize()
//这个函数会解析标签下的各属性
deserializeCollection<DevicePortTraits>(doc, root, devicePorts, NULL);
//最终解析完device标签,同样赋值给hwModule
module->setDeclaredDevices(devicePorts);
//解析标签,要看到希望了哈,route很重要主要把source和sink连接起来
RouteTraits::Collection routes;
//调用RouteTraits::deserialize()
deserializeCollection<RouteTraits>(doc, root, routes, module.get());
module->setRoutes(routes);
//到此还未结束,回到module标签的开始会发现和标签还未解析
const xmlNode *children = root->xmlChildrenNode;
while (children != NULL) {
if (!xmlStrcmp(children->name, (const xmlChar *)childAttachedDevicesTag)) {
ALOGV("%s: %s %s found", __FUNCTION__, tag, childAttachedDevicesTag);
const xmlNode *child = children->xmlChildrenNode;
while (child != NULL) {
if (!xmlStrcmp(child->name, (const xmlChar *)childAttachedDeviceTag)) {
xmlChar *attachedDevice = xmlNodeListGetString(doc, child->xmlChildrenNode, 1);
if (attachedDevice != NULL) {
ALOGV("%s: %s %s=%s", __FUNCTION__, tag, childAttachedDeviceTag,
(const char*)attachedDevice);
//解析标签找到和device标签下name相同的DeviceDescriptor
sp<DeviceDescriptor> device =
module->getDeclaredDevices().getDeviceFromTagName(String8((const char*)attachedDevice));
//ctx即audioPolicyConfig
ctx->addAvailableDevice(device);
xmlFree(attachedDevice);
}
}
child = child->next;
}
}
//同理解析后通过AudioPolicyConfig设置下默认的输出设备即mDefaultOutputDevices
if (!xmlStrcmp(children->name, (const xmlChar *)childDefaultOutputDeviceTag)) {
xmlChar *defaultOutputDevice = xmlNodeListGetString(doc, children->xmlChildrenNode, 1);;
if (defaultOutputDevice != NULL) {
ALOGV("%s: %s %s=%s", __FUNCTION__, tag, childDefaultOutputDeviceTag,
(const char*)defaultOutputDevice);
sp<DeviceDescriptor> device =
module->getDeclaredDevices().getDeviceFromTagName(String8((const char*)defaultOutputDevice));
if (device != 0 && ctx->getDefaultOutputDevice() == 0) {
ctx->setDefaultOutputDevice(device);
ALOGV("%s: default is %08x", __FUNCTION__, ctx->getDefaultOutputDevice()->type());
}
xmlFree(defaultOutputDevice);
}
}
children = children->next;
}
return NO_ERROR;
}
从XML里面看到,共有四个module,分别对应四个so库:
module下面有mixPorts、devicePorts和routes子段,它们下面又分别包含多个mixPort、devicePort和route的字段,这些字段内标识为source和sink两种角色:
devicePorts(source):为实际的硬件输入设备;
devicePorts(sink):为实际的硬件输出设备;
mixPorts(source):为经过AudioFlinger之后的流类型,也称“输出流设备”,是个逻辑设备而非物理设备,对应AudioFlinger里面的一个PlayerThread;
mixPorts(sink):为进入AudioFlinger之前的流类型,也称“输入流设备”,是个逻辑设备而非物理设备,对应AudioFlinger里面的一个RecordThread;
routes:定义devicePort和mixPorts的路由策略。
名字为“primary”的module还存在attachedDevices和defaultOutputDevice。下面分析一下MixPortTraits::deserialize()和RouteTraits::deserialize()。字段为mixPort的配置将被MixPortTraits::deserialize()解析:
const char *const MixPortTraits::collectionTag = "mixPorts";
const char *const MixPortTraits::tag = "mixPort";
const char MixPortTraits::Attributes::name[] = "name";
const char MixPortTraits::Attributes::role[] = "role";
const char MixPortTraits::Attributes::flags[] = "flags";
const char MixPortTraits::Attributes::maxOpenCount[] = "maxOpenCount";
const char MixPortTraits::Attributes::maxActiveCount[] = "maxActiveCount";
status_t MixPortTraits::deserialize(_xmlDoc *doc, const _xmlNode *child, PtrElement &mixPort,
PtrSerializingCtx /*serializingContext*/)
{
string name = getXmlAttribute(child, Attributes::name);
if (name.empty()) {
ALOGE("%s: No %s found", __FUNCTION__, Attributes::name);
return BAD_VALUE;
}
ALOGV("%s: %s %s=%s", __FUNCTION__, tag, Attributes::name, name.c_str());
string role = getXmlAttribute(child, Attributes::role);
if (role.empty()) {
ALOGE("%s: No %s found", __FUNCTION__, Attributes::role);
return BAD_VALUE;
}
ALOGV("%s: Role=%s", __FUNCTION__, role.c_str());
//portRole 分为 sink和source sink
audio_port_role_t portRole = role == "source" ? AUDIO_PORT_ROLE_SOURCE : AUDIO_PORT_ROLE_SINK;
//在Serializer.h头文件里看下发现其实new是IOProfile typedef IOProfile Element;而IOProfile继承AudioPort。
mixPort = new Element(String8(name.c_str()), portRole);
AudioProfileTraits::Collection profiles;
//执行AudioProfileTraits::deserialize()
deserializeCollection<AudioProfileTraits>(doc, child, profiles, NULL);
//如果profiles是空也会初始化个默认的,也就是每个标签下一定要有个
if (profiles.isEmpty()) {
sp <AudioProfile> dynamicProfile = new AudioProfile(gDynamicFormat,
ChannelsVector(), SampleRateVector());
dynamicProfile->setDynamicFormat(true);
dynamicProfile->setDynamicChannels(true);
dynamicProfile->setDynamicRate(true);
profiles.add(dynamicProfile);
}
//mixport即IOProfile,profiles即AudioProfiles,把AudioProfiles赋值给了IOProfile
mixPort->setAudioProfiles(profiles);
//下边这俩标签一般都不会使用,解析出来赋给mixport,一般在使用时如果没有特殊需求,一般使用的都是默认的
string flags = getXmlAttribute(child, Attributes::flags);
//如果flag标签存在,再设置下flag
if (!flags.empty()) {
// Source role
if (portRole == AUDIO_PORT_ROLE_SOURCE) {
mixPort->setFlags(OutputFlagConverter::maskFromString(flags));
} else {
// Sink role
mixPort->setFlags(InputFlagConverter::maskFromString(flags));
}
}
string maxOpenCount = getXmlAttribute(child, Attributes::maxOpenCount);
if (!maxOpenCount.empty()) {
convertTo(maxOpenCount, mixPort->maxOpenCount);
}
string maxActiveCount = getXmlAttribute(child, Attributes::maxActiveCount);
if (!maxActiveCount.empty()) {
convertTo(maxActiveCount, mixPort->maxActiveCount);
}
// Deserialize children
//解析下的这个在mixporit下通常也是没有的
AudioGainTraits::Collection gains;
deserializeCollection<AudioGainTraits>(doc, child, gains, NULL);
mixPort->setGains(gains);
return NO_ERROR;
}
如上代码,mixPort其实是个IOProfile 类实例,继承AudioPort。摘取xml一个mixPort:
profile参数包含音频流一些信息,比如位数、采样率、通道数,它将被构建为AudioProfile对象,保存到mixPort,然后在存储到module。对于xml里面的devicePort,一般没有profile参数,则会创建一个默认的profile。当把mixPort加入到Moudle时,会进行分类:
status_t HwModule::addProfile(const sp<IOProfile> &profile)
{
//调用了addOutputProfile和addInputProfile,其实这俩函数最终就是
//赋值mInputProfiles和mOutputProfiles这俩集合。
switch (profile->getRole()) {
case AUDIO_PORT_ROLE_SOURCE:
return addOutputProfile(profile);
case AUDIO_PORT_ROLE_SINK:
return addInputProfile(profile);
case AUDIO_PORT_ROLE_NONE:
return BAD_VALUE;
}
return BAD_VALUE;
}
即source角色保存到OutputProfileCollection mOutputProfiles,sink角色保存到InputProfileCollection mInputProfiles。
而devicePort则调用HwModule::setDeclaredDevices()保存到module的mDeclaredDevices:
void HwModule::setDeclaredDevices(const DeviceVector &devices)
{
mDeclaredDevices = devices;
for (size_t i = 0; i < devices.size(); i++) {
mPorts.add(devices[i]);
}
}
注:一个IOProfile(即AudioPort)可包含多个AudioProfile,保存在其成员变量AudioProfileVector mProfiles。
继续分析xml中字段为route,将被RouteTraits::deserialize()解析:
const char *const RouteTraits::tag = "route";
const char *const RouteTraits::collectionTag = "routes";
const char RouteTraits::Attributes::type[] = "type";
const char RouteTraits::Attributes::typeMix[] = "mix";
const char RouteTraits::Attributes::sink[] = "sink";
const char RouteTraits::Attributes::sources[] = "sources";
status_t RouteTraits::deserialize(_xmlDoc */*doc*/, const _xmlNode *root, PtrElement &element,
PtrSerializingCtx ctx)
{
string type = getXmlAttribute(root, Attributes::type);
if (type.empty()) {
ALOGE("%s: No %s found", __FUNCTION__, Attributes::type);
return BAD_VALUE;
}
//首先看
audio_route_type_t routeType = (type == Attributes::typeMix) ?
AUDIO_ROUTE_MIX : AUDIO_ROUTE_MUX;
ALOGV("%s: %s %s=%s", __FUNCTION__, tag, Attributes::type, type.c_str());
// new AudioRoute并将routeType传递下来
element = new Element(routeType);
string sinkAttr = getXmlAttribute(root, Attributes::sink);
if (sinkAttr.empty()) {
ALOGE("%s: No %s found", __FUNCTION__, Attributes::sink);
return BAD_VALUE;
}
// Convert Sink name to port pointer
//ctx就是解析的HwModule,findPortByTagName是找到module下的mixport(IOProfile),根据mixprot标签name找的
sp<AudioPort> sink = ctx->findPortByTagName(String8(sinkAttr.c_str()));
if (sink == NULL) {
ALOGE("%s: no sink found with name=%s", __FUNCTION__, sinkAttr.c_str());
return BAD_VALUE;
}
//找到sink属性,将sink值即Earpiece赋值给AudioRoute的setSink 标签
element->setSink(sink);
//解析sources属性
//sources下可能有多个,因此我们将用循环来处理
string sourcesAttr = getXmlAttribute(root, Attributes::sources);
if (sourcesAttr.empty()) {
ALOGE("%s: No %s found", __FUNCTION__, Attributes::sources);
return BAD_VALUE;
}
// Tokenize and Convert Sources name to port pointer
AudioPortVector sources;
char *sourcesLiteral = strndup(sourcesAttr.c_str(), strlen(sourcesAttr.c_str()));
char *devTag = strtok(sourcesLiteral, ",");
while (devTag != NULL) {
if (strlen(devTag) != 0) {
//还记得之前解析的mixport实际是IOProfile,而IOProfile继承自AudioPort,因此这里找的便是之前的mixport。
sp<AudioPort> source = ctx->findPortByTagName(String8(devTag));
if (source == NULL) {
ALOGE("%s: no source found with name=%s", __FUNCTION__, devTag);
free(sourcesLiteral);
return BAD_VALUE;
}
sources.add(source);
}
devTag = strtok(NULL, ",");
}
free(sourcesLiteral);
//将audioroute赋值到audioport中
sink->addRoute(element);
for (size_t i = 0; i < sources.size(); i++) {
sp<AudioPort> source = sources.itemAt(i);
//添加到AudioPort的AudioRouteVector mRoutes
source->addRoute(element);
}
//将这个sink route支持的所有sources也记录到sink route里面。
element->setSources(sources);
return NO_ERROR;
}
route的作用:
安卓音频在创建AudioTrack时会调用AudioSystem::getOutputForAttr(),根据应用程序指定的音频参数,然后根据音频策略选择device,最后根据device选择它所属的输出流设备(output)和 PlaybackThread。其中,如何选择输入/输出流(output),则需要根据xml配置文件中的route,一个output可能输出到多个device,而根据音频参数flag和输出设备device,根据route可以得到它所对应的output,也就是一个PlaybackThread。
最终解析完的所有module, config.setHwModules(modules)设置下去。到此基本就差不多了,剩下以下的的原理一样就不说了。
// deserialize volume section
deserializeCollection<VolumeTraits>(doc, cur, volumes, &config);
Global Configuration
GlobalConfigTraits::deserialize(cur, config);
audio_policy_configuration.xml位于frameworks/av/services/audiopolicy/config/ 目录下,有点需要注意这里有个
<xi:include href="a2dp_audio_policy_configuration.xml"/>
<xi:include href="usb_audio_policy_configuration.xml"/>
<xi:include href="r_submix_audio_policy_configuration.xml"/>
使用“包含”(XInclude)方法可避免将标准 Android 开放源代码项目 (AOSP) 音频 HAL 模块配置信息复制到所有音频政策配置文件(这样做容易出错)google为以下音频 HAL 提供了标准音频政策配置 xml 文件:
A2DP:a2dp_audio_policy_configuration.xml
重新导向子混音:rsubmix_audio_policy_configuration.xml
USB:usb_audio_policy_configuration.xml