回归、多项式回归、多重回归

1.回归、多项式回归、多重回归

1.1 回归(单变量)

预测一个变量 x x x与一个变量 y y y的关系
例如:广告费 x x x与点击量 y y y
用直线拟合数据
回归、多项式回归、多重回归_第1张图片
回归、多项式回归、多重回归_第2张图片

回归、多项式回归、多重回归_第3张图片

1.2 多项式回归(单变量)

预测一个变量 x x x与一个变量 y y y的关系
例如:广告费 x x x与点击量 y y y
用曲线拟合数据
回归、多项式回归、多重回归_第4张图片

n次曲线
f θ ( x ) = θ 0 + θ 1 x + θ 2 x 2 + ⋯ + θ n x n f_{\theta}(x)=\theta_0+\theta_1x+\theta_2x^2+\cdots+\theta_nx^n fθ(x)=θ0+θ1x+θ2x2++θnxn
尽管次数越高对训练数据拟合越精确(过拟合)但我们的目的是用这个拟合曲线去预测训练数据之外的数据,需要这个曲线或模型具备泛化能力,而不是仅仅代表训练数据,过拟合使得模型不再具有代表性了,不能预测一般情形了

1.3 多重回归(多变量)

预测多个变量 x x x与一个变量 y y y的关系
例如:广告费 x 1 x_1 x1、广告展示位置 x 2 x_2 x2、广告版面大小 x 3 x_3 x3与点击量 y y y
f θ ( x 1 , ⋯ , x n ) = θ 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n f_{\theta}(x_1,\cdots,x_n)=\theta_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_nx_n fθ(x1xn)=θ0+θ1x1+θ2x2++θnxn
θ = [ θ 0 θ 1 ⋮ θ n ] 、 x = [ x 0 x 1 ⋮ x n ] ( x 0 = 1 ) \boldsymbol{\theta}= \left [ \begin{matrix} \theta_0\\ \theta_1 \\ \vdots\\ \theta_n \end{matrix} \right ] 、 \boldsymbol{x}= \left [ \begin{matrix} x_0\\ x_1 \\ \vdots\\ x_n \end{matrix} \right ](x_0=1) θ= θ0θ1θn x= x0x1xn x0=1
f θ ( x ) = θ T x = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n f_{\boldsymbol{\theta}}(\boldsymbol{x})=\boldsymbol{\theta}^T\boldsymbol{x}=\theta_0x_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_nx_n fθ(x)=θTx=θ0x0+θ1x1+θ2x2++θnxn
回归、多项式回归、多重回归_第5张图片
θ j : = θ j − η ∑ i = 1 n ( f θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j:=\theta_j-\eta\sum_{i=1}^n\big(f_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})-y^{(i)}\big)x_j^{(i)} θj:=θjηi=1n(fθ(x(i))y(i))xj(i)
上述表达式使用了所有训练数据的误差

对目标函数的优化方法:
最速下降法(梯度下降法/Gradient Descent) 对所有训练数据都重复进行计算
梯度下降法的问题是训练数据越多,循环次数越多,计算时间越长,选用随机数作为初始值,每次初始值都会变,进而导致陷入局部最优解的问题

在GD算法中,每次的梯度都是从所有样本中累计获取的,这种情况最容易导致梯度方向过于稳定一致,且更新次数过少,容易陷入局部最优–摘自:防止梯度下降陷入局部最优的三种方法

回归、多项式回归、多重回归_第6张图片
随机梯度下降法(Stochastic GD)随机选择一个训练数据,并使用它来更新参数
k是被随机选中的数据索引
θ j : = θ j − η ( f θ ( x ( k ) ) − y ( k ) ) x j ( k ) \theta_j:=\theta_j-\eta\big(f_{\boldsymbol{\theta}}(\boldsymbol{x}^{(k)})-y^{(k)}\big)x_j^{(k)} θj:=θjη(fθ(x(k))y(k))xj(k)
注意这里没有求和,因为只使用了一个训练数据
为什么随机梯度下降法不容易陷入局部最优?

stochastic GD是GD的另一种极端更新方式,其每次都只使用一个样本进行参数更新,这样更新次数大大增加,更新参数时使用的又是选择数据时的梯度,每次梯度方向不同,也就不容易陷入局部最优。–摘自:防止梯度下降陷入局部最优的三种方法

小批量梯度下降法(Mini-Batch GD)随机选择m个训练数据来更新参数
θ j : = θ j − η ∑ k ∈ K ( f θ ( x ( k ) ) − y ( k ) ) x j ( k ) \theta_j:=\theta_j-\eta\sum_{k\in K}\big(f_{\boldsymbol{\theta}}(\boldsymbol{x}^{(k)})-y^{(k)}\big)x_j^{(k)} θj:=θjηkK(fθ(x(k))y(k))xj(k)
∑ k ∈ K \sum_{k\in K} kK代表将集合K中的所有元素相加

Mini-Batch GD便是两种极端的折中,即每次更新使用一小批样本进行参数更新。Mini-Batch GD是目前最常用的优化算法,严格意义上Mini-Batch GD也叫做stochastic GD,所以很多深度学习框架上都叫做SGD。–摘自:防止梯度下降陷入局部最优的三种方法

回归、多项式回归、多重回归_第7张图片

动量(Momentum)

动量也是GD中常用的方式之一,SGD的更新方式虽然有效,但每次只依赖于当前批样本的梯度方向,这样的梯度方向依然很可能很随机。动量就是用来减少随机,增加稳定性。其思想是模仿物理学的动量方式,每次更新前加入部分上一次的梯度量,这样整个梯度方向就不容易过于随机。一些常见情况时,如上次梯度过大,导致进入局部最小点时,下一次更新能很容易借助上次的大梯度跳出局部最小点。–摘自:防止梯度下降陷入局部最优的三种方法

无论使用哪种优化方法对目标函数进行优化,我们都必须考虑学习率 η \eta η设置为合适的值很重要,这个问题比较难,可以通过反复尝试来找到合适的值

你可能感兴趣的:(机器学习基础,回归,多项式回归,多重回归)