- python画图|同时输出二维和三维图
西猫雷婶
python开发语言
前面已经学习了如何输出二维图和三维图,部分文章详见下述链接:python画图|极坐标下的3Dsurface-CSDN博客python画图|垂线标记系列_如何用pyplot画垂直x轴的线-CSDN博客有时候也需要同时输出二位和三维图,因此有必要学习一下。【1】官网教程首先我们打开官网教程,链接如下。https://matplotlib.org/stable/gallery/mplot3d/mixed
- 【笔记】扩散模型(七):Latent Diffusion Models(Stable Diffusion)论文解读与代码实现
LittleNyima
DiffusionModels笔记stablediffusionAIGC人工智能
论文链接:High-ResolutionImageSynthesiswithLatentDiffusionModels官方实现:CompVis/latent-diffusion、CompVis/stable-diffusion这一篇文章的内容是LatentDiffusionModels(LDM),也就是大名鼎鼎的StableDiffusion。先前的扩散模型一直面临的比较大的问题是采样空间太大,学
- 淘宝教育的视频打不开
云雀_
CameraImageQualityTestsoftwareskill
淘宝教育的视频打不开,显示:“亲~该课程还未通过审核哦”因为在学习淘宝教育上的课程:所以想在Ubuntu16.04下观看视频;可是打不开哈Browser:google-chrome-stable(89.0.4389.82-1)尝试其它的Browser,下面的Brwoser好像可以,要用一段时间才知道好用不Browser:palemoon(29.1.1-1.gtk2)(downloadweb:htt
- Stable Diffusion-AI美女模特写真使用InstantID插件(附插件)
快乐星球没有乐
人工智能stablediffusion美女midjourney媒体音视频
ControlNet单元1:上传人脸定位照上传任意一张照片,它的作用是控制最终出图的人物脸部位置。我们可以和第一张图片一样。相关[参数设置如下:控制类型:选择"Instant_ID"预处理器:instant_id_face_keypoints模型:control_instant_id_sdxl控制权重:0.5左右(0.45-0.5)【第四步】图片的生成点击【生成】按钮,我们来看一下最终生成的图片效
- Midjourney和 Stable Diffusion,学谁呢?
Ai君臣
Midjourney是在线的,可以使用文字制作令人惊叹的AI图片。它与StableDiffusion类似,但也有一些区别。Midjourney只能在互联网上使用,并且需要付费。那么,值得为Midjourney付费吗?它与稳定扩散有何不同?MidjourneyvsStableDiffusion——功能比较您将在本节中找到StableDiffusion和Midjourney之间的详细比较。与Midjo
- 【Vidu发布】中国首个长时长、高一致性、高动态性Video AI大模型
叶锦鲤
人工智能
就在昨日(2024年4月27日),北京生数科技有限公司(以下简称“生数科技”)联合清华大学在中关村论坛-未来人工智能先锋论坛上,正式发布中国首个长时长、高一致性、高动态性视频大模型:Vidu。该模型采用生数科技团队原创的Diffusion与Transformer融合的架构U-ViT。据发布会介绍,Vidu不仅支持一键生成长达16秒、分辨率高达1080P的高清视频内容,还能够模拟真实物理世界,拥有丰
- nginx1.16安装
清晨细雨~
nginxcentosnginx安装
参考:https://nginx.org/en/linux_packages.html#RHEL-CentOS1.必备条件sudoyuminstallyum-utils2.设置云仓库创建文件:vi/etc/yum.repos.d/nginx.repo内容如下:[nginx-stable]name=nginxstablerepobaseurl=http://nginx.org/packages/ce
- 谷歌浏览器ChromeDriver 128,129,130驱动下载
下东西不要币多好
Pythonpython
可以试试这个页面:https://googlechromelabs.github.io/chrome-for-testing/#stable我需要的128.0.6613.120就是在这里找到的,浏览器,驱动都能下
- CentOS7 安装Docker,并配置阿里云镜像
JBryan
1、安装Docker1.1、安装gccyum-yinstallgccgcc-c++1.2、安装需要的软件包yuminstall-yyum-utilsdevice-mapper-persistent-datalvm21.3、设置stable镜像仓库yum-config-manager--add-repohttp://mirrors.aliyun.com/docker-ce/linux/centos/
- ERROR: Could not find a version that satisfies the requirement torch==xxx+cuxxx解决方案
神奇宝贝威威
偶得之深度学习pythonpytorch
官网的链接:pipinstalltorch==1.10.0+cu111torchvision==0.11.0+cu111torchaudio==0.10.0-fhttps://download.pytorch.org/whl/torch_stable.html一直下载失败--无法找到满足对torch的要求的版本以及找不到匹配的分发版本的错误。解决方法:使用conda-forge频道Conda-fo
- 滚动条出现时不占用 `div` 空间
昕er
前端
在滚动条出现时不占用div空间,通常可以通过CSS中的scrollbar-gutter属性来控制。以下是实现方式:div{width:100%;height:300px;overflow-y:auto;scrollbar-gutter:stable;/*保证滚动条出现时不会改变布局*/}解释:scrollbar-gutter:stable;:这个属性确保滚动条出现时不会改变div的内容宽度,避免布
- linux 下chrome使用
LittleJessy
安装chromewgethttps://dl.google.com/linux/direct/google-chrome-stable_current_x86_64.rpmyuminstall./google-chrome-stable_current_x86_64.rpmyuminstallmesa-libOSMesa-develgnu-free-sans-fontswqy-zenhei-fon
- 如何在算家云搭建模型Stable-diffusion-webUI(AI绘画)
算家云
stablediffusionAI作画人工智能算家云大模型计算机视觉AIGC
一、StableDiffusionWebUI简介StableDiffusionWebUI是一个网页版的AI绘画工具,基于强大的绘画模型StableDiffusion,可以实现文生图、图生图等。二、模型搭建流程1.选择主机和镜像(1)进入算家云的“应用社区”,点击搜索或者找到"stable-diffusion-webui,进入详情页后,点击“创建应用”(2)进入“租用实例”页面之后会自动匹配模型,选
- FLUX 1 将像 Stable Diffusion 一样完整支持ControlNet组件
吴脑的键客
AI作画stablediffusion深度学习人工智能
之前InstantX团队做的多合一的FluxControlNet现在开始和ShakkerAI合作并推出了:Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro该模型支持7种控制模式,包括canny(0),tile(1),depth(2),blur(3),pose(4),gray(5)和lowquality(6),并且还能和其他ControlNet一起使用。模型卡
- 如何在Mac电脑上本地部署Stable Diffusion:详细教程(webUI)
玩AI的小胡子
macosstablediffusionAIGC
StableDiffusion是一款强大的AI生成图像模型,它可以基于文本描述生成高质量的图像。对于想要在本地运行此模型的用户来说,使用Mac电脑部署StableDiffusion是一个非常吸引人的选择,特别是对于M1或M2芯片的用户。本文将详细介绍如何在Mac上本地部署StableDiffusion,包括WebUI的设置。一、准备工作1.系统要求•操作系统:macOS12.0(Monterey)
- FFmpeg源码:av_rescale_rnd、av_rescale_q_rnd、av_rescale_q、av_add_stable函数分析
cuijiecheng2018
FFmpeg源码分析ffmpeg
一、av_rescale_rnd函数(一)av_rescale_rnd函数的声明av_rescale_rnd函数声明在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0.1)的头文件libavutil/mathematics.h中:/***Roundingmethods.*/enumAVRounding{AV_ROUND_ZERO=0,///2**av_rescale_rnd(AV_NOP
- Your Diffusion Model is Secretly a Zero-Shot Classifier论文阅读笔记
Rising_Flashlight
论文阅读笔记计算机视觉
YourDiffusionModelisSecretlyaZero-ShotClassifier论文阅读笔记这篇文章我感觉在智源大会上听到无数个大佬讨论,包括OpenAISora团队负责人,谢赛宁,好像还有杨植麟。虽然这个文章好像似乎被引量不是特别高,但是和AI甚至人类理解很本质的问题很相关,即是不是要通过生成来构建理解的问题,文章的做法也很巧妙,感觉是一些学者灵机一动的产物,好好学习一个!摘要这
- Redis入门篇 - CentOS 7下载、安装Redis实操演示
ChineHe
Redisrediscentos数据库
文章记录了在CentOS7上,通过源码的形式,下载安装Redis的操作过程进入要安装Redis的目录cd/usr/local下载源码压缩包wgethttps://download.redis.io/redis-stable.tar.gz#不同版本可能地址不同下载完成后,使用ll命令检查,可以看到下载的压缩包:下载完成后,解压下载的压缩包tar-xzvfredis-stable.tar.gz解压完成
- 探索Stable Diffusion:AI在艺术创作中的无限可能
master_chenchengg
AI技术探讨AI人工智能AIGC行业分析
探索StableDiffusion:AI在艺术创作中的无限可能引言一、StableDiffusion简介定义与历史技术原理概述二、工作原理深入解析扩散模型基础逆向扩散过程详解潜空间与变分自编码器(VAE)U-Net架构的作用三、StableDiffusion与艺术创作的融合创作自由度的提升个性化风格的实现跨媒介艺术的可能性四、案例研究艺术家应用StableDiffusion的实例与传统艺术形式的对
- Stable Diffusion
Covirtue
人工智能pythonstablediffusion
StableDiffusion是一种基于深度学习的文本到图像生成模型,其原理主要基于扩散模型(DiffusionModel)的变体,即潜在扩散模型(LatentDiffusionModel,LDM)。原理一、技术架构与组成StableDiffusion由三个主要部分组成:变分自编码器(VAE)、U-Net和一个文本编码器。变分自编码器(VAE):VAE是一种生成模型,用于将图像压缩到低维的潜在空间
- centos离线安装docker,docker-compose
程序人生518
centosdockerlinux
安装环境操作系统:Centos7.99内核版本:3.10.0-1160.el7.x86_64安装用户:rootdocker离线安装1下载压缩包官网下载地址:https://download.docker.com/linux/static/stable/x86_64/这里默认选择最新版本(26.0.2)。2上传压缩包并解压tarzxvftarzxvfdocker-26.0.2.tgz3配置docke
- [sklearn] 分类指标解惑
PigeonGuan
sklearn分类人工智能
首先查看metrics官方文档:https://scikit-learn.org/stable/api/sklearn.metrics.htmlweighted/macro/micro/samples的区别weighted和samplesweighted这个参数在roc_auc_score函数中,其实就是考虑了trueinstance的情况(也就是需要传一个sample_weights的参数?)。
- 5分钟 Stable Diffusion 本地安装
狒狒伯尼
stablediffusion
StableDiffusion是一种强大的文本到图像生成模型,由于其开源特性,用户可以在本地计算机上进行安装和使用。下面是一个精简的5分钟快速指南,帮助您在本地安装StableDiffusion。为了确保顺利操作,您需要具备一定的计算机基础知识,并预先安装Python和Git。安装前的准备确保系统要求:您需要一台安装了NVIDIA显卡的计算机(最好支持CUDA,至少6GB显存)。操作系统:Wind
- Django Channels 实现 websocket 通讯
郭大帅
PythonDjangopython
官方文档如下:https://channels.readthedocs.io/en/stable/introduction.htmlChannels改变Django在下面和通过Django的同步核心编织异步代码,允许Django项目不仅处理HTTP,还需要处理需要长时间连接的协议-WebSockets,MQTT,chatbots,业余无线电等等。它在保留Django同步和易用性的同时实现了这一点,
- Stable Diffusion快速安装及prompt的使用
老童聊AI
老童陪你学AIpythonstablediffusion
StableDiffusion是一种基于深度学习的文本到图像生成技术,它可以生成高质量的图像。以下是一篇快速安装教程,适合初学者理解和操作。什么是StableDiffusion?StableDiffusion是一种AI模型,它能够根据用户输入的文本描述生成相应的图像。这项技术在艺术创作、游戏设计、广告制作等领域有着广泛的应用。系统要求在开始安装之前,请确保你的计算机满足以下基本要求:操作系统:Wi
- 5分钟 Stable Diffusion 本地安装
Python老吕
Python老吕笔记stablediffusionStableDiffusionDiffusion安装Diffusion本地安装Stable安装Stable本地安装
5分钟StableDiffusion本地安装5分钟StableDiffusion本地安装1.引言1.1什么是StableDiffusion?1.2本地安装的优势2.准备工作2.1系统要求2.2推荐硬件配置2.3软件依赖3.安装步骤3.1下载StableDiffusion3.2安装Python环境3.3安装必要的Python库3.4配置环境变量(如适用)4.运行StableDiffusion4.1启
- Mac系统安装redis
bcqkdt
1下载redis:网址:https://redis.io/download,下载stable版本,稳定版本。2解压:tarzxvfredis-5.0.4.tar.gz。3将解压后文件夹放到/usr/localmvredis-5.0.4/usr/local/(这里可能会有usr/local目录的写入权限问题,参考:https://www.jianshu.com/p/a32224a38195)4切换到
- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- 【Stable Diffusion】:原理、应用与未来展望
Python小原
stablediffusion人工智能深度学习
一、引言在人工智能的快速发展中,StableDiffusion作为一种先进的随机过程模型,受到了广泛的关注。StableDiffusion不仅能够描述许多自然和人工系统中的随机演化行为,而且在多个领域展现出了广泛的应用潜力。本文将详细介绍StableDiffusion的原理、应用以及未来的发展趋势。二、StableDiffusion的原理StableDiffusion可以被定义为一个基于随机漫步的
- AIGC:Kolors: Effective Training of Diffusion Model for Photorealistic Text-to-Image Synthesis
微风❤水墨
AIGC
代码:GitHub-Kwai-Kolors/Kolors:KolorsTeam论文:Kolors/imgs/Kolors_paper.pdfatmaster·Kwai-Kolors/Kolors·GitHub模型:huaggingface:https://huggingface.co/Kwai-Kolors/Kolors-diffusersmodelscope:https://modelscope
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多