(tps_iter_match_1)
% script for doing shape-context based matching with alternating steps
% of estimating correspondences and estimating the regularized TPS
% transformation
% initialize transformed version of model pointset
Xk=X;
% initialize counter
k=1;
s=1;
% out_vec_{1,2} are indicator vectors for keeping track of estimated
% outliers on each iteration
out_vec_1=zeros(1,nsamp1);
out_vec_2=zeros(1,nsamp2);
while s
disp(['iter=' int2str(k)])
% compute shape contexts for (transformed) model
[BH1,mean_dist_1]=sc_compute(Xk',zeros(1,nsamp1),mean_dist_global,nbins_theta,nbins_r,r_inner,r_outer,out_vec_1);
% compute shape contexts for target, using the scale estimate from
% the warped model
% Note: this is necessary only because out_vec_2 can change on each
% iteration, which affects the shape contexts. Otherwise, Y does
% not change.
[BH2,mean_dist_2]=sc_compute(Y',zeros(1,nsamp2),mean_dist_1,nbins_theta,nbins_r,r_inner,r_outer,out_vec_2);
% compute regularization parameter
beta_k=(mean_dist_1^2)*beta_init*r^(k-1);
% compute pairwise cost between all shape contexts
costmat=hist_cost_2(BH1,BH2);
% pad the cost matrix with costs for dummies
nptsd=nsamp1+ndum1;
costmat2=eps_dum*ones(nptsd,nptsd);
costmat2(1:nsamp1,1:nsamp2)=costmat;
disp('running hungarian alg.')
cvec=hungarian(costmat2);
% cvec=hungarian_fast(costmat2);
disp('done.')
% update outlier indicator vectors
[a,cvec2]=sort(cvec);
out_vec_1=cvec2(1:nsamp1)>nsamp2;
out_vec_2=cvec(1:nsamp2)>nsamp1;
% format versions of Xk and Y that can be plotted with outliers'
% correspondences missing
X2=NaN*ones(nptsd,2);
X2(1:nsamp1,:)=Xk;
X2=X2(cvec,:);
X2b=NaN*ones(nptsd,2);
X2b(1:nsamp1,:)=X;
X2b=X2b(cvec,:);
Y2=NaN*ones(nptsd,2);
Y2(1:nsamp2,:)=Y;
% extract coordinates of non-dummy correspondences and use them
% to estimate transformation
ind_good=find(~isnan(X2b(1:nsamp1,1)));
% NOTE: Gianluca said he had to change nsamp1 to nsamp2 in the
% preceding line to get it to work properly when nsamp1~=nsamp2 and
% both sides have outliers...
n_good=length(ind_good);
X3b=X2b(ind_good,:);
Y3=Y2(ind_good,:);
if display_flag
figure(2)
plot(X2(:,1),X2(:,2),'b+',Y2(:,1),Y2(:,2),'ro')
hold on
h=plot([X2(:,1) Y2(:,1)]',[X2(:,2) Y2(:,2)]','k-');
hold off
title([int2str(n_good) ' correspondences (warped X)'])
drawnow
end
if display_flag
% show the correspondences between the untransformed images
figure(3)
plot(X(:,1),X(:,2),'b+',Y(:,1),Y(:,2),'ro')
ind=cvec(ind_good);
hold on
plot([X2b(:,1) Y2(:,1)]',[X2b(:,2) Y2(:,2)]','k-')
hold off
title([int2str(n_good) ' correspondences (unwarped X)'])
drawnow
end
% estimate regularized TPS transformation
[cx,cy,E]=bookstein(X3b,Y3,beta_k);
% calculate affine cost
A=[cx(n_good+2:n_good+3,:) cy(n_good+2:n_good+3,:)];
s=svd(A);
aff_cost=log(s(1)/s(2));
% calculate shape context cost
[a1,b1]=min(costmat,[],1);
[a2,b2]=min(costmat,[],2);
sc_cost=max(mean(a1),mean(a2));
% warp each coordinate
fx_aff=cx(n_good+1:n_good+3)'*[ones(1,nsamp1); X'];
d2=max(dist2(X3b,X),0);
U=d2.*log(d2+eps);
fx_wrp=cx(1:n_good)'*U;
fx=fx_aff+fx_wrp;
fy_aff=cy(n_good+1:n_good+3)'*[ones(1,nsamp1); X'];
fy_wrp=cy(1:n_good)'*U;
fy=fy_aff+fy_wrp;
Z=[fx; fy]';
% compute the mean squared error between synthetic warped image
% and estimated warped image (using ground-truth correspondences
% on TPS transformed image)
mse2=mean((y2(:,1)-Z(:,1)).^2+(y2(:,2)-Z(:,2)).^2);
% Chui actually does mean of non-squared distance
mse1=mean(sqrt((y2(:,1)-Z(:,1)).^2+(y2(:,2)-Z(:,2)).^2));
disp(['error = ' num2str(mse1)])
if display_flag
figure(4)
plot(Z(:,1),Z(:,2),'b+',Y(:,1),Y(:,2),'ro');
title(['recovered TPS transformation (k=' int2str(k) ', \lambda_o=' num2str(beta_init*r^(k-1)) ', I_f=' num2str(E) ', error=' num2str(mse1) ')'])
% show warped coordinate grid
fx_aff=cx(n_good+1:n_good+3)'*[ones(1,M); x'; y'];
d2=dist2(X3b,[x y]);
fx_wrp=cx(1:n_good)'*(d2.*log(d2+eps));
fx=fx_aff+fx_wrp;
fy_aff=cy(n_good+1:n_good+3)'*[ones(1,M); x'; y'];
fy_wrp=cy(1:n_good)'*(d2.*log(d2+eps));
fy=fy_aff+fy_wrp;
hold on
plot(fx,fy,'k.','markersize',1)
hold off
drawnow
end
% update Xk for the next iteration
Xk=Z;
% stop early if shape context score is sufficiently low
if k==n_iter
s=0;
else
k=k+1;
end
end