C++——命名空间(namespace)

目录

1. C语言命名冲突

2. 命名空间定义

3. 命名空间使用

  • 可能大家在看别人写的C++代码中,在一开始会包这个头文件:#include

这个头文件等价于我们在C语言学习到的#include,它是用来跟我们的控制台输入和输出的,这里简要提下,后续详谈。

  • 除了上面这个头文件,还有这样一行代码:using namespace std;

namespace就是我们要接触C++的第一个关键字,它就是命名空间。

在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。

1. C语言命名冲突

 在正式引入namespace前,再来回顾下C语言的命名冲突问题:

#include
//命名冲突
int rand = 0;
int main()
{
	printf("%d", rand);
	return 0;
}

如上的代码中,头文件我们只用了intclude,暂无其它。我们定义了全局变量rand,并且代码可以正常编译没有任何错误。

但是要知道C语言存在一个库函数正是rand,但是要包上头文件#include,包上了这个头文件,再运行试试:

这里很明显发生命名冲突了,我们定义的全局变量rand和库里的rand函数冲突

想要解决此问题也非常简单,可能有人会说我修改变量名就可以了,确实可以,但并不是长久之计,如若我在不知情的状态下使用该变量超过100次,难道你要一个一个修改吗,这就充分体现了C语言的命名冲突。

在C++中,引入的命名空间namespace就很好解决了C语言的命名冲突问题。

2. 命名空间定义

定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{ }即可,{}中即为命名空间的成员。

如下:

 同一个作用域不能出现两个相同变量,此时的rand被关在n1的命名空间域里了,跟其它东西进行了隔离。所以在stdlib.h头文件展开时并不会发生命名冲突。此时rand的打印均是库函数里rand的地址,rand就是一个函数指针,打印的就是地址。

再比如:

此段代码更充分的体现了加上命名空间,不仅可以避免命名冲突,而且还告诉我们,此时再访问变量m、c、f,均是在全局域里访问的,而xzy这个命名空间域里的变量与全局域建立了一道围墙,互不干扰。不过这里c和m依旧是全局变量,命名空间不影响生命周期

命名空间有三大特性:

  • 1、命名空间可以定义变量,函数,类型
//1. 普通的命名空间
namespace N1 // N1为命名空间的名称
{
	// 命名空间中的内容,既可以定义变量,也可以定义函数,也可以定义类型
	int a; //变量
	int Add(int left, int right) //函数
	{
		return left + right;
	}
    struct ListNode //类型
    {
        int val;
        struct ListNode* next;
    }
 
}
  • 2、命名空间可以嵌套
//2. 命名空间可以嵌套
namespace N2
{
	int a;
	int b;
	int Add(int left, int right)
	{
		return left + right;
	}
	namespace N3
	{
		int c;
		int d;
		int Sub(int left, int right)
		{
			return left - right;
		}
	}
}
  • 3、同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中
//3. 同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
namespace N1
{
	int Mul(int left, int right)
	{
		return left * right;
	}
}

3. 命名空间使用

我们都清楚在C语言中,存在局部优先规则,如下:

int a = 0; //全局域
int main()
{
	int a = 1; //局部域
	printf("%d\n", a); // 1 局部优先
	return 0;
}

我们都清楚这里的结果是1,但是如若我非要打印全局域里的a呢?

这里引出域作用限定符 :: ),效果如下:

加上了( :: ) ,此时访问的a,就是全局域,这里是全局域的原因是“ ::”的前面是空白,如若是空白,那么访问的就是全局域,这么看的话,我在“ ::”前面换成命名空间域,不就可以访问命名空间域里的内容了吗。其实“ ::”就是命名空间使用的一种方式。

 比如我们定义了如下的命名空间:

namespace n1 
{
	int f = 0;
	int rand = 0;
}

现在该如何访问命名空间域里的内容呢?其实有3种方法:

  1. 加命名空间名称及作用域限定符“ ::”;
  2. 使用using namespace 命名空间名称全部展开;
  3. 使用using将命名空间中成员部分展开。
  • 1、加命名空间及作用域限定符“ ::”
int main()
{
	printf("%d\n", n1::f); //0
	printf("%d\n", n1::rand);//0
	return 0;
}

为了防止定义相同的变量或类型,我们可以定义多个命名空间来避免。

namespace ret
{
	struct ListNode
	{
		int val;
		struct ListNode* next;
	};
}
 
namespace tmp
{
	struct ListNode
	{
		int val;
		struct ListNode* next;
	};
	struct QueueNode
	{
		int val;
		struct QueueNode* next;
	};
}

当我们要使用它们时,如下:

int main()
{
	struct ret::ListNode* n1 = NULL;
	struct tmp::ListNode* n2 = NULL;
	return 0;
}

针对命名空间的嵌套,如下:

 可以这样进行访问:

int main()
{
	struct tx::List::Node* n1; //访问List.h文件中的Node
	struct tx::Queue::Node* n2;//访问Queue.h文件中的Node
}

但是上述访问的方式有点过于麻烦,可不可以省略些重复的呢?比如不写tx::,这里就引出命名空间访问的第二种方法:

  • 2、使用using namespace 命名空间名称全部展开
using namespace tx;

这句话的意思是把tx这个命名空间定义的东西放出来,所以我们就可这样访问:

int main()
{
	struct List::Node* n1; //访问List.h文件中的Node
	struct Queue::Node* n2;//访问Queue.h文件中的Node
}

当然,我还可以再拆一层,如下:

using namespace tx;
using namespace List;
int main()
{
	struct Node* n1; //访问List.h文件中的Node
	struct Queue::Node* n2;//访问Queue.h文件中的Node
}

展开时要注意tx和List的顺序不能颠倒

这种访问方式是可以达到简化效果,但是也会存在一定风险:命名空间全部释放又重新回到命名冲突

 所以针对某些特定会出现命名冲突问题的,需要单独讨论:

由此我们得知:全部展开并不好,我们需要按需索取,用什么展开什么,由此引出第三种使用方法。

  • 3、使用using将命名空间中成员展开

针对上述代码,我们只放f出来:

namespace n1
{
	int f = 0;
	int rand = 0;
}
using n1::f;
int main()
{
	f += 2;
	printf("%d\n", f);
	n1::rand += 2;
	printf("%d\n", n1::rand);
}
  • 下面来看下C++的标准库命名空间:
#include
using namespace std; //std 是封C++库的命名空间
int main()
{
	cout << "hello world" << endl; // hello world
	return 0;
}

如若省去了这行代码:using namespace std;

想要输出hello world就要这样做:

#include
int main()
{
	std::cout << "hello world" << std::endl;
	return 0;
}

当然也可以这样:

#include
using std::cout;
int main()
{
	cout << "hello world" << std::endl;
	return 0;
}

这就充分运用到了命名空间。

 

你可能感兴趣的:(c++,算法,开发语言)