机器学习算法是一类用于从数据中学习模式和规律的算法。这些算法可以通过训练样本的输入和输出来推断出模型的参数,然后用于预测新的未知数据。
当谈到机器学习算法时,有很多不同的算法可以使用,以下是十大基本的机器学习算法:
机器学习算法大致可以分为三类:
这些算法在不同的问题和数据集上具有不同的优势和适用性,选择合适的算法取决于具体的任务和数据特征。 接下来向大家介绍一下这些算法:
回归分析(Regression Analysis)是统计学的数据分析方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测其它变量的变化情况。
线性回归算法(Linear Regression)的建模过程就是使用数据点来寻找最佳拟合线。公式,y = m*x + c,其中 y 是因变量,x 是自变量,利用给定的数据集求 m 和 c 的值。
线性回归又分为两种类型,即简单线性回归(simple linear regression),只有 1 个自变量;多变量回归(multiple regression),至少两组以上自变量。
下面是一个线性回归示例:基于 Python scikit-learn 工具包描述。
支持向量机/网络算法(SVM)属于分类型算法。SVM模型将实例表示为空间中的点,将使用一条直线分隔数据点。需要注意的是,支持向量机需要对输入数据进行完全标记,仅直接适用于两类任务,应用将多类任务需要减少到几个二元问题。
KNN算法是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的惰性学习。用最近的邻居(k)来预测未知数据点。k 值是预测精度的一个关键因素,无论是分类还是回归,衡量邻居的权重都非常有用,较近邻居的权重比较远邻居的权重大。
KNN 算法的缺点是对数据的局部结构非常敏感。计算量大,需要对数据进行规范化处理,使每个数据点都在相同的范围。
延伸:KNN 的一个缺点是依赖于整个训练数据集,学习向量量化(Learning Vector Quantization,LVQ)是一种监督学习的人神经网络算法,允许你选择训练实例。LVQ 由数据驱动,搜索距离它最近的两个神经元,对于同类神经元采取拉拢,异类神经元采取排斥,最终得到数据的分布模式。如果基于 KNN 可以获得较好的数据集分类效果,利用 LVQ 可以减少存储训练数据集存储规模。典型的学习矢量量化算法有LVQ1、LVQ2和LVQ3,尤以LVQ2的应用最为广泛。
逻辑回归算法(Logistic Regression)一般用于需要明确输出的场景,如某些事件的发生(预测是否会发生降雨)。通常,逻辑回归使用某种函数将概率值压缩到某一特定范围。
例如,Sigmoid 函数(S 函数)是一种具有 S 形曲线、用于二元分类的函数。它将发生某事件的概率值转换为 0, 1 的范围表示。
Y = E ^(b0+b1 x)/(1 + E ^(b0+b1 x ))
以上是一个简单的逻辑回归方程,B0,B1是常数。这些常数值将被计算获得,以确保预测值和实际值之间的误差最小。
决策树(Decision tree)是一种特殊的树结构,由一个决策图和可能的结果(例如成本和风险)组成,用来辅助决策。机器学习中,决策树是一个预测模型,树中每个节点表示某个对象,而每个分叉路径则代表某个可能的属性值,而每个叶节点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,通常该算法用于解决分类问题。
一个决策树包含三种类型的节点:
简单决策树算法案例,确定人群中谁喜欢使用信用卡。考虑人群的年龄和婚姻状况,如果年龄在30岁或是已婚,人们更倾向于选择信用卡,反之则更少。
通过确定合适的属性来定义更多的类别,可以进一步扩展此决策树。在这个例子中,如果一个人结婚了,他超过30岁,他们更有可能拥有信用卡(100% 偏好)。测试数据用于生成决策树。
注意:对于那些各类别样本数量不一致的数据,在决策树当中信息增益的结果偏向于那些具有更多数值的特征。
k-平均算法(K-Means)是一种无监督学习算法,为聚类问题提供了一种解决方案。
K-Means 算法把 n 个点(可以是样本的一次观察或一个实例)划分到 k 个集群(cluster),使得每个点都属于离他最近的均值(即聚类中心,centroid)对应的集群。重复上述过程一直持续到重心不改变。
随机森林算法(Random Forest)的名称由 1995 年由贝尔实验室提出的random decision forests 而来,正如它的名字所说的那样,随机森林可以看作一个决策树的集合。
随机森林中每棵决策树估计一个分类,这个过程称为“投票(vote)”。理想情况下,我们根据每棵决策树的每个投票,选择最多投票的分类。
朴素贝叶斯算法(Naive Bayes)基于概率论的贝叶斯定理,应用非常广泛,从文本分类、垃圾邮件过滤器、医疗诊断等等。朴素贝叶斯适用于特征之间的相互独立的场景,例如利用花瓣的长度和宽度来预测花的类型。“朴素”的内涵可以理解为特征和特征之间独立性强。
与朴素贝叶斯算法密切相关的一个概念是最大似然估计(Maximum likelihood estimation),历史上大部分的最大似然估计理论也都是在贝叶斯统计中得到大发展。例如,建立人口身高模型,很难有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取分布的均值与方差。
在机器学习和统计学领域,降维是指在限定条件下,降低随机变量个数,得到一组“不相关”主变量的过程,并可进一步细分为特征选择和特征提取两大方法。
一些数据集可能包含许多难以处理的变量。特别是资源丰富的情况下,系统中的数据将非常详细。在这种情况下,数据集可能包含数千个变量,其中大多数变量也可能是不必要的。在这种情况下,几乎不可能确定对我们的预测影响最大的变量。此时,我们需要使用降维算法,降维的过程中也可能需要用到其他算法,例如借用随机森林,决策树来识别最重要的变量。
梯度增强算法(Gradient Boosting)使用多个弱算法来创建更强大的精确算法。它与使用单个估计量不同,而是使用多个估计量创建一个更稳定和更健壮的算法。梯度增强算法有几种:
机器学习算法的学习是一个长期的过程,需要不断地练习和实践才能够掌握。通过坚持不懈地学习和实践,你将能够快速掌握机器学习算法并应用于实际问题中。
点赞+评论+收藏本文,随机抽6人送!
《机器学习Python版》
介绍:机器学习初学者入门指南,使用Python语言以及scikit-learn库,掌握开发机器学习系统所需的流程、模式和策略。
详情:点此查看