索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。
索引的作用就相当于书的目录。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。
索引底层数据结构存在很多种类型,常见的索引结构有: B 树, B+树 和 Hash、红黑树。在 MySQL 中,无论是 Innodb 还是 MyIsam,都使用了 B+树作为索引结构。
优点:
缺点:
但是,使用索引一定能提高查询性能吗?
大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来
B 树也称 B-树,全称为 多路平衡查找树 ,B+ 树是 B 树的一种变体。B 树和 B+树中的 B 是 Balanced
(平衡)的意思。
目前大部分数据库系统及文件系统都采用 B-Tree 或其变种 B+Tree 作为索引结构。
B 树& B+树两者有何异同呢?
综上,B+树与 B 树相比,具备更少的 IO 次数、更稳定的查询效率和更适于范围查询这些优势。
在 MySQL 中,MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是,两者的实现方式不太一样。(下面的内容整理自《Java 工程师修炼之道》)
MyISAM 引擎中,B+Tree 叶节点的 data 域存放的是数据记录的地址。在索引检索的时候,首先按照 B+Tree 搜索算法搜索索引,如果指定的 Key 存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引(非聚集索引)”。
InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。这被称为“聚簇索引(聚集索引)”,而其余的索引都作为 辅助索引 ,辅助索引的 data 域存储相应记录主键的值而不是地址,这也是和 MyISAM 不同的地方。在根据主索引搜索时,直接找到 key 所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。
MySQL的默认的存储引擎InnoDB采用的B+树的数据结构来存储索引,选择B+树的主要的原因是:第一阶数更多,路径更短,第二个磁盘读写代价B+树更低,非叶子节点只存储指针,叶子阶段存储数据,第三是B+树便于扫库和区间查询,叶子节点是一个双向链表
按照底层存储方式角度划分:
按照应用维度划分:
CHAR
、VARCHAR
,TEXT
列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。聚簇索引(Clustered Index)即索引结构和数据一起存放的索引,并不是一种单独的索引类型。InnoDB 中的主键索引就属于聚簇索引。
在 MySQL 中,InnoDB 引擎的表的 .ibd
文件就包含了该表的索引和数据,对于 InnoDB 引擎表来说,该表的索引(B+树)的每个非叶子节点存储索引,叶子节点存储索引和索引对应的数据。
优点:
缺点:
非聚簇索引(Non-Clustered Index)即索引结构和数据分开存放的索引,并不是一种单独的索引类型。二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。
非聚簇索引的叶子节点并不一定存放数据的指针,因为二级索引的叶子节点就存放的是主键,根据主键再回表查数据。
优点:
更新代价比聚簇索引要小 。非聚簇索引的更新代价就没有聚簇索引那么大了,非聚簇索引的叶子节点是不存放数据的
缺点:
如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为 覆盖索引(Covering Index) 。我们知道在 InnoDB 存储引擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次,这样就会比较慢。而覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!
覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了,而无需回表查询。
如主键索引,如果一条 SQL 需要查询主键,那么正好根据主键索引就可以查到主键。再如普通索引,如果一条 SQL 需要查询 name,name 字段正好有索引, 那么直接根据这个索引就可以查到数据,也无需回表。
我们这里以 score
和 name
两个字段建立联合索引:
ALTER TABLE `cus_order` ADD INDEX id_score_name(score, name);
创建完成之后,再用 EXPLAIN
命令分析再次分析这条 SQL 语句
EXPLAIN SELECT `score`,`name` FROM `cus_order` ORDER BY `score` DESC;#降序排序
通过 Extra
这一列的 Using index
,说明这条 SQL 语句成功使用了覆盖索引。
使用表中的多个字段创建索引,就是 联合索引,也叫 组合索引 或 复合索引。
以 score
和 name
两个字段建立联合索引:
ALTER TABLE `cus_order` ADD INDEX id_score_name(score, name);
跟刚才介绍的聚簇索引和非聚簇索引是有关系的,回表的意思就是通过二级索引找到对应的主键值,然后再通过主键值找到聚集索引中所对应的整行数据,这个过程就是回表。
最左前缀匹配原则指的是,在使用联合索引时,MySQL 会根据联合索引中的字段顺序,从左到右依次到查询条件中去匹配,如果查询条件中存在与联合索引中最左侧字段相匹配的字段,则就会使用该字段过滤一批数据,直至联合索引中全部字段匹配完成,或者在执行过程中遇到范围查询(如 >、<)才会停止匹配。对于 >=、<=、BETWEEN、like 前缀匹配的范围查询,并不会停止匹配。所以,我们在使用联合索引时,可以将区分度高的字段放在最左边,这也可以过滤更多数据。
虽然索引能带来查询上的效率,但是维护索引的成本也是不小的。 如果一个字段不被经常查询,反而被经常修改,那么就更不应该在这种字段上建立索引了。
索引并不是越多越好,建议单张表索引不超过 5 个!索引可以提高效率同样可以降低效率。
索引可以增加查询效率,但同样也会降低插入和更新的效率,甚至有些情况下会降低查询效率。
因为 MySQL 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加 MySQL 优化器生成执行计划的时间,同样会降低查询性能。
因为索引是需要占用磁盘空间的,可以简单理解为每个索引都对应着一颗 B+树。如果一个表的字段过多,索引过多,那么当这个表的数据达到一个体量后,索引占用的空间也是很多的,且修改索引时,耗费的时间也是较多的。如果是联合索引,多个字段在一个索引上,那么将会节约很大磁盘空间,且修改数据的操作效率也会提升。
冗余索引指的是索引的功能相同,能够命中索引(a, b)就肯定能命中索引(a) ,那么索引(a)就是冗余索引。如(name,city )和(name )这两个索引就是冗余索引,能够命中前者的查询肯定是能够命中后者的 在大多数情况下,都应该尽量扩展已有的索引而不是创建新索引。
前缀索引仅限于字符串类型,较普通索引会占用更小的空间,所以可以考虑使用前缀索引带替普通索引。
索引失效也是慢查询的主要原因之一,常见的导致索引失效的情况有下面这些:
SELECT *
进行查询; SELECT *
不会直接导致索引失效(如果不走索引大概率是因为 where 查询范围过大导致的),但它可能会带来一些其他的性能问题比如造成网络传输和数据处理的浪费、无法使用索引覆盖;%
开头的 LIKE 查询比如 like '%abc'
;我们可以使用 EXPLAIN
命令来分析 SQL 的 执行计划 ,这样就知道语句是否命中索引了。执行计划是指一条 SQL 语句在经过 MySQL 查询优化器的优化会后,具体的执行方式。
EXPLAIN
并不会真的去执行相关的语句,而是通过 查询优化器 对语句进行分析,找出最优的查询方案,并显示对应的信息。
EXPLAIN
的输出格式如下:
mysql> EXPLAIN SELECT `score`,`name` FROM `cus_order` ORDER BY `score` DESC;
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
| 1 | SIMPLE | cus_order | NULL | ALL | NULL | NULL | NULL | NULL | 997572 | 100.00 | Using filesort |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
1 row in set, 1 warning (0.00 sec)
各个字段的含义如下:
列名 | 含义 |
---|---|
id | SELECT 查询的序列标识符 |
select_type | SELECT 关键字对应的查询类型 |
table | 用到的表名 |
partitions | 匹配的分区,对于未分区的表,值为 NULL |
type | 表的访问方法 |
possible_keys | 可能用到的索引 |
key | 实际用到的索引 |
key_len | 所选索引的长度 |
ref | 当使用索引等值查询时,与索引作比较的列或常量 |
rows | 预计要读取的行数 |
filtered | 按表条件过滤后,留存的记录数的百分比 |
Extra | 附加信息 |
部分修改,原文链接:https://javaguide.cn/database/mysql/mysql-index.html#%E7%9F%A5%E9%81%93%E5%A6%82%E4%BD%95%E5%88%86%E6%9E%90%E8%AF%AD%E5%8F%A5%E6%98%AF%E5%90%A6%E8%B5%B0%E7%B4%A2%E5%BC%95%E6%9F%A5%E8%AF%A2