BEVFormer转onnx,并优化

以下记录均是在bevformer_tiny版本上进行的实验,且不考虑时序输入

参考了https://github.com/DerryHub/BEVFormer_tensorrt,但是这个是为了部署在tensorRT上的,自己定义了一些特殊的算子,并不是我需要的,所以自己尝试重新转onnx。

一、配置环境

        直接在bevformer官方推荐的环境上进行转onnx操作:https://github.com/fundamentalvision/BEVFormer/blob/master/docs/install.md

二、准备工作

        在路径:mmdetection3d/BEVFormer/projects/mmdet3d_plugin/bevformer/apis/test.py中添加一个函数:

def custom_multi_gpu_test_onnx(model, data_loader,tmpdir=None, gpu_collect=False):
    """Test model with multiple gpus.
    This method tests model with multiple gpus and collects the results
    under two different modes: gpu and cpu modes. By setting 'gpu_collect=True'
    it encodes results to gpu tensors and use gpu communication for results
    collection. On cpu mode it saves the results on different gpus to 'tmpdir'
    and collects them by the rank 0 worker.
    Args:
        model (nn.Module): Model to be tested.
        data_loader (nn.Dataloader): Pytorch data loader.
        tmpdir (str): Path of directory to save the temporary results from
            different gpus under cpu mode.
        gpu_collect (bool): Option to use either gpu or cpu to collect results.
    Returns:
        list: The prediction results.
    """
    model.eval()
    bbox_results = []
    mask_results = []
    dataset = data_loader.dataset
    rank, world_size = get_dist_info()
    if rank == 0:
        prog_bar = mmcv.ProgressBar(len(dataset))
    time.sleep(2)  # This line can prevent deadlock problem in some cases.
    have_mask = False
    
    repetitions = 100
    for i, data in enumerate(data_loader):
        
        with torch.no_grad():
            inputs = {}
            inputs['img'] = data['img'][0].data[0].float().unsqueeze(0) #torch.randn(6,3,736,1280)#.cuda()
            #inputs['return_loss'] = False
            inputs['img_metas'] = [1]
            inputs['img_metas'][0] = [1]
            inputs['img_metas'][0][0] = {}
            inputs['img_metas'][0][0]['can_bus'] = torch.from_numpy(data['img_metas'][0].data[0][0]['can_bus']).float()#torch.randn(18)#.cuda()
            inputs['img_metas'][0][0]['lidar2img'] = torch.from_numpy(np.array(data['img_metas'][0].data[0][0]['lidar2img'])).float().unsqueeze(0)#torch.randn(1,6,4,4)#.cuda()
            inputs['img_metas'][0][0]['scene_token'] = 'fcbccedd61424f1b85dcbf8f897f9754'
            inputs['img_metas'][0][0]['img_shape'] = torch.Tensor([[480,800]]) 
            output_file = '/×××/BEVformer/mmdetection3d/BEVFormer/J5/bevformer_tiny.onnx'
            torch.onnx.export(
                model,
                inputs,
                output_file,
                export_params=True,
                keep_initializers_as_inputs=True,
                do_constant_folding=False,
                verbose=False,
                opset_version=11,
            )

            print(f"ONNX file has been saved in {output_file}")
            return {0:'1'}

        然后使用mmdetection3d/BEVFormer/tools/test.py这个用来测试的脚本进行转onnx操作,把233行的custom_multi_gpu_test改成上面定义的函数custom_multi_gpu_test_onnx,我是在cpu上操作的,所以把上面分布式操作去掉了,如图所示BEVFormer转onnx,并优化_第1张图片

        按照如下图修改配置信息,方便调试

BEVFormer转onnx,并优化_第2张图片

三、开始排错

报错1:KeyError:‘RANK'

BEVFormer转onnx,并优化_第3张图片

解决方法: 点进dist_utils.py里面,修改内容,如下所示

def _init_dist_pytorch(backend, **kwargs):
    # TODO: use local_rank instead of rank % num_gpus
    os.environ['RANK'] = '0'
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '5678'
    rank = int(os.environ['RANK'])
    num_gpus = torch.cuda.device_count()
    torch.cuda.set_device(rank % num_gpus)
    dist.init_process_group(backend=backend, world_size=int(1),**kwargs)

报错2:AttributeError: 'NoneType' object has no attribute 'size'

原因是bevformer的模型的forward输入比较特殊,不是单纯的字典或者列表,为了方便转onnx,进行一些改写,如下:

 (1)将mmdetection3d/BEVFormer/projects/mmdet3d_plugin/bevformer/detectors/bevformer.py中143行的forward函数改成:

    def forward(self, input):  #return_loss=True,
        """Calls either forward_train or forward_test depending on whether
        return_loss=True.
        Note this setting will change the expected inputs. When
        `return_loss=True`, img and img_metas are single-nested (i.e.
        torch.Tensor and list[dict]), and when `resturn_loss=False`, img and
        img_metas should be double nested (i.e.  list[torch.Tensor],
        list[list[dict]]), with the outer list indicating test time
        augmentations.
        """
        #return_loss = input['return_loss']
        #if return_loss:
            #return self.forward_train(**kwargs)
        #else:
        #input['rescale']=True
        # return_loss=False, rescale=True, 
        return self.forward_test(input['img_metas'], input['img'])

 (2)forward_test函数定义去掉**kwargs, self.simple_test()函数输入也去掉**kwargs

报错3:ValueError: only one element tensors can be converted to Python scalars

原因 bevformer本来是以numpy形式输入'can_bus’参数的,但是转模型的时候应该所有变量都是tensor的形式,我们在初始化数据输入的时候是用torch.randn()生成输入,所以做如下修改:

将bevformer/modules/transformer.py的get_bev_feature函数改为:

def get_bev_features(
            self,
            mlvl_feats,
            bev_queries,
            bev_h,
            bev_w,
            grid_length=[0.512, 0.512],
            bev_pos=None,
            prev_bev=None,
            **kwargs):
        """
        obtain bev features.
        """

        bs = mlvl_feats[0].size(0)
        bev_queries = bev_queries.unsqueeze(1).repeat(1, bs, 1)
        bev_pos = bev_pos.flatten(2).permute(2, 0, 1)

        # obtain rotation angle and shift with ego motion
        delta_x = np.array([each['can_bus'][0].cpu().numpy()
                           for each in kwargs['img_metas']])
        delta_x = torch.from_numpy(delta_x)
        delta_y = np.array([each['can_bus'][1].cpu().numpy()
                           for each in kwargs['img_metas']])
        delta_y = torch.from_numpy(delta_y)
        ego_angle = np.array(
            [each['can_bus'][-2] / np.pi * 180 for each in kwargs['img_metas']])
        ego_angle = torch.from_numpy(ego_angle.astype(np.float32))
        grid_length_y = grid_length[0]
        grid_length_x = grid_length[1]
        translation_length = torch.sqrt(delta_x ** 2 + delta_y ** 2)
        translation_angle = (
            (
                torch.atan(delta_y / (delta_x + 1e-8))
                + ((1 - torch.sign(delta_x)) / 2) * torch.sign(delta_y) * np.pi
            )
            / np.pi
            * 180
        )
        bev_angle = ego_angle - translation_angle
        shift_y = translation_length * \
            torch.cos(bev_angle / 180 * np.pi) / grid_length_y / bev_h
        shift_x = translation_length * \
            torch.sin(bev_angle / 180 * np.pi) / grid_length_x / bev_w
        shift_y = shift_y * int(self.use_shift)
        shift_x = shift_x * int(self.use_shift)
        shift = torch.stack([shift_x, shift_y]).permute(1, 0)
        #shift = 0

        if prev_bev is not None:
            if prev_bev.shape[1] == bev_h * bev_w:
                prev_bev = prev_bev.permute(1, 0, 2)
            if self.rotate_prev_bev:
                for i in range(bs):
                    # num_prev_bev = prev_bev.size(1)
                    rotation_angle = kwargs['img_metas'][i]['can_bus'][-1]
                    tmp_prev_bev = prev_bev[:, i].reshape(
                        bev_h, bev_w, -1).permute(2, 0, 1)
                    tmp_prev_bev = rotate(tmp_prev_bev, rotation_angle,
                                          center=self.rotate_center)
                    tmp_prev_bev = tmp_prev_bev.permute(1, 2, 0).reshape(
                        bev_h * bev_w, 1, -1)
                    prev_bev[:, i] = tmp_prev_bev[:, 0]

        # add can bus signals
        can_bus = bev_queries.new_tensor(
            [each['can_bus'].cpu().numpy() for each in kwargs['img_metas']])  # [:, :]
        can_bus = self.can_bus_mlp(can_bus)[None, :, :]
        bev_queries = bev_queries + can_bus * int(self.use_can_bus)

        feat_flatten = []
        spatial_shapes = []
        for lvl, feat in enumerate(mlvl_feats):
            bs, num_cam, c, h, w = feat.shape
            spatial_shape = (h, w)
            feat = feat.flatten(3).permute(1, 0, 3, 2)
            if self.use_cams_embeds:
                feat = feat + self.cams_embeds[:, None, None, :].to(feat.dtype)
            feat = feat + self.level_embeds[None,
                                            None, lvl:lvl + 1, :].to(feat.dtype)
            spatial_shapes.append(spatial_shape)
            feat_flatten.append(feat)

        feat_flatten = torch.cat(feat_flatten, 2)
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=bev_pos.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))

        feat_flatten = feat_flatten.permute(
            0, 2, 1, 3)  # (num_cam, H*W, bs, embed_dims)

        bev_embed = self.encoder(
            bev_queries,
            feat_flatten,
            feat_flatten,
            bev_h=bev_h,
            bev_w=bev_w,
            bev_pos=bev_pos,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            prev_bev=prev_bev,
            shift=shift,
            **kwargs
        )

        return bev_embed

报错4:ValueError: only one element tensors can be converted to Python scalars

在encoder.py的point_sampling函数里面也有这个问题, 直接注释掉95~99行,改为

lidar2img = img_metas[0]['lidar2img']

报错5:KeyError: 'box_type_3d'

这里是bevformer模型输入比较特殊的地方,这个变量是一个类名,不是数据,大概的作用是对模型输出进行包装后处理的,我们在这里可以直接注释掉这一行 

报错6:RuntimeError: Exporting the operator linspace to ONNX opset version 11 is not supported.

如果必须要用opset 11版本的torch.onnx转模型,这个地方会提示torch.linspace算子不支持,定位到算子在bevformer/modules/encoder.py的 BEVFormerEncoder.get_reference_points函数中 

可以选择使用torch.range()和torch.arrange()算子进行替换,这里我用torch.arange(),替换如下:

    def get_reference_points(H, W, Z=8, num_points_in_pillar=4, dim='3d', bs=1, device='cuda', dtype=torch.float):
        """Get the reference points used in SCA and TSA.
        Args:
            H, W: spatial shape of bev.
            Z: hight of pillar.
            D: sample D points uniformly from each pillar.
            device (obj:`device`): The device where
                reference_points should be.
        Returns:
            Tensor: reference points used in decoder, has \
                shape (bs, num_keys, num_levels, 2).
        """

        # reference points in 3D space, used in spatial cross-attention (SCA)
        if dim == '3d':
            zs = torch.cat((torch.arange(0.5,Z-0.5,(Z-1)/(num_points_in_pillar-1)), torch.Tensor([Z-0.5])),dim=0).view(-1, 1, 1).expand(num_points_in_pillar, H, W) / Z
            xs = torch.cat((torch.arange(0.5, W-0.5, (W-1)/(W-1)), torch.Tensor([W-0.5])),dim=0).view(1, 1, W).expand(num_points_in_pillar, H, W) / W
            ys = torch.cat((torch.arange(0.5, H-0.5, (H-1)/(H-1)), torch.Tensor([H-0.5])),dim=0).view(1, H, 1).expand(num_points_in_pillar, H, W) / H
            ref_3d = torch.stack((xs, ys, zs), -1)
            ref_3d = ref_3d.permute(0, 3, 1, 2).flatten(2).permute(0, 2, 1)
            ref_3d = ref_3d[None].repeat(bs, 1, 1, 1)
            return ref_3d

        # reference points on 2D bev plane, used in temporal self-attention (TSA).
        elif dim == '2d':
            ref_y, ref_x = torch.meshgrid(
                torch.cat((torch.arange(0.5, H-0.5, (H-1)/(H-1)), torch.Tensor([H-0.5])),dim=0),
                torch.cat((torch.arange(0.5, W-0.5, (W-1)/(W-1)), torch.Tensor([W-0.5])),dim=0)
                    )
            ref_y = ref_y.reshape(-1)[None] / H
            ref_x = ref_x.reshape(-1)[None] / W
            ref_2d = torch.stack((ref_x, ref_y), -1)
            ref_2d = ref_2d.repeat(bs, 1, 1).unsqueeze(2)
            return ref_2d

报错7:RuntimeError: Exporting the operator maximum to ONNX opset version 11 is not supported

提示maximum算子不支持,定位到算子位于evformer/modules/encoder.py的 BEVFormerEncoder.point_sampling函数中,直接将torch.maximum()改为torch.max()效果是一样的。

报错8:RuntimeError: Exporting the operator nan_to_num to ONNX opset version 11 is not supported.

就在报错7的位置的下面一点点,有一个bev_mask=torch.nan_to_num(bev_mask),这个地方在转onnx的时候可以直接去掉。

报错9:RuntimeError: Exporting the operator grid_sampler to ONNX opset version 11 is not supported

很经典的报错,定位算子,从这个函数点进去:

from mmcv.ops.multi_scale_deform_attn import multi_scale_deformable_attn_pytorch

 先导入需要的函数:

from mmcv.ops.point_sample import bilinear_grid_sample

然后再multi_scale_deformable_attn_pytorch中将

        sampling_value_l_ = F.grid_sample(
            value_l_,
            sampling_grid_l_,
            mode='bilinear',
            padding_mode='zeros',
            align_corners=False)

替换为:

sampling_value_l_ = bilinear_grid_sample(value_l_,sampling_grid_l_)

效果是一样的

并且将这个函数中的最后一行的reshape改为view

报错10:RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces).

直接点进报错信息中的/mmcv/ops/point_sample.py中,找到x = x.view(n,-1),改为:

    x = x.contiguous().view(n, -1)
    y = y.contiguous().view(n, -1)

报错11:RuntimeError: Exporting the operator atan2 to ONNX opset version 11 is not supported.

atan2算子不支持,定位到算子位置在mmdetection3d/BEVFormer/projects/mmdet3d_plugin/core/bbox/util.py的31行,替换为:

    rot = (
            (
                torch.atan((rot_sine / (rot_cosine + 1e-8)).sigmoid())
                + ((1 - torch.sign(rot_cosine)) / 2) * torch.sign(rot_sine) * np.pi
            )
    )

报错12:TypeError: _all() takes 2 positional arguments but 4 were given 
(Occurred when translating all).

这个报错属于是torch版本比较低的缘故,但是由于bevformer的环境指定了torch==1.9.1所以不好直接更新torch版本,参考https://blog.csdn.net/andrewchen1985/article/details/125197226 

from torch.onnx import symbolic_opset9

点进symbolic_opset9这个文件里面,定位到2440行,将def _any(g,input)和def _all(g, input)这;两个函数改为:

def _any(g, *args):
    # aten::any(Tensor self)
    if len(args) == 1:
        input = args[0]
        dim, keepdim = None, 0
    # aten::any(Tensor self, int dim, bool keepdim)
    else:
        input, dim, keepdim = args
        dim = [_parse_arg(dim, "i")]
        keepdim = _parse_arg(keepdim, "i")
    input = _cast_Long(g, input, False)  # type: ignore[name-defined]
    input_sum = sym_help._reducesum_helper(g, input,
                                           axes_i=dim, keepdims_i=keepdim)
    return gt(g, input_sum, g.op("Constant", value_t=torch.LongTensor([0])))
 
def _all(g, *args):
    input = g.op("Not", args[0])
    # aten::all(Tensor self)
    if len(args) == 1:
        return g.op("Not", _any(g, input))
    # aten::all(Tensor self, int dim, bool keepdim)
    else:
        return g.op("Not", _any(g, input, args[1], args[2]))
————————————————
版权声明:本文为CSDN博主「andrewchen1985」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/andrewchen1985/article/details/125197226

报错13:RuntimeError: Exporting the operator __iand_ to ONNX opset version 11 is not supported.

算子不支持,这个算子找了好久,定位到mmdetection3d/BEVFormer/projects/mmdet3d_plugin/core/bbox/coders/nms_free_coder.py的80行,意思是mask &= ......相与操作‘&’有问题,替换为:

mask = (mask.float()*((final_box_preds[..., :3] <= self.post_center_range[3:]).all(1)).float()).bool()

OK,到这里onnx初步转好了:

BEVFormer转onnx,并优化_第4张图片

四、优化onnx

虽然转好了onnx,但是可以看到输出很多警告信息,实际上这个onnx可能还是有点问题的,我们先用onnx simplifier包优化一下:

import onnx
import onnxsim
onnx_path = '/×××/mmdetection3d/BEVFormer/ckpts/bevformer_tiny.onnx'
model_onnx = onnx.load(onnx_path)  # load onnx model
onnx.checker.check_model(model_onnx)  # check onnx model
print(onnx.helper.printable_graph(model_onnx.graph))  # print

sim_onnx_path = '/×××/mmdetection3d/BEVFormer/ckpts/bevformer_tiny_sim.onnx'

print(f'simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(model_onnx, check_n=3,skip_shape_inference=True)
assert check, 'assert check failed'
onnx.save(model_onnx, sim_onnx_path)

 报错1:onnxruntime.capi.onnxruntime_pybind11_state.InvalidGraph: [ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. Type Error: Type 'tensor(int64)' of input parameter (8733) of operator (Clip) in node (Clip_7993) is invalid.

BEVFormer转onnx,并优化_第5张图片

定位这个问题的过程比较繁琐,从mmcv.cnn.bricks.transformer.MultiheadAttention的self.attn中进入nn.MultiheadAttention,从nn.MultiheadAttention的forward中进入F.multi_head_attention_forward(),再从F.multi_head_attention_forward()中的_in_projection_packed()点进去

简单来说点进functional中

import torch.nn.functional

搜索_in_projection_packed,在第4729行将;

w_q, w_k, w_v = w.chunk(3)

改为:

w_q, w_k, w_v = w.split(int(w.shape[0]/3))

在第4734行将

b_q, b_k, b_v = b.chunk(3)

改为:

b_q, b_k, b_v = b.split(int(b.shape[0]/3))

 另外,在SpatialCrossAttention的forward中的有一行 count = torch.clamp(count, min=1.0)

改为

count[count<1]=1

 在decoder.py中的inverse_sigmoid函数由于存在torch.clamp函数,所以需要改写为

def inverse_sigmoid(x, eps=1e-5):
    """Inverse function of sigmoid.
    Args:
        x (Tensor): The tensor to do the
            inverse.
        eps (float): EPS avoid numerical
            overflow. Defaults 1e-5.
    Returns:
        Tensor: The x has passed the inverse
            function of sigmoid, has same
            shape with input.
    """
    #x = x.clamp(min=0, max=1)
    x[x<0] = 0
    x[x>1] = 1
    #x1 = x#.clamp(min=eps)
    x1 = x.clone()
    x1[x1

另外,也要把这个函数放到bevformer_head中,用来替换从mmdet.models.utils.transformer中导入的inverse_sigmoid

报错2:onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Non-zero status code returned while running Expand node. Name:'Expand_1855' Status Message: invalid expand shape

BEVFormer转onnx,并优化_第6张图片

关于expand算子的问题, 

虽然还没搞清楚原因是啥,但是我知道咋改。定位到mmdetection3d/BEVFormer/projects/mmdet3d_plugin/bevformer/modules/spatial_cross_attention.py的SpatialCrossAttention的forward的forward里面,将

queries_rebatch[j, i, :len(index_query_per_img)] = query[j, index_query_per_img]

改为:

queries_rebatch[j, i, :len(index_query_per_img)] = query[j, np.array(index_query_per_img)]

下面一行的

reference_points_rebatch[j, i, :len(index_query_per_img)] = reference_points_per_img[j, index_query_per_img]

改为:

reference_points_rebatch[j, i, :len(index_query_per_img)] = reference_points_per_img[j, np.array(index_query_per_img)]

再在下面的

slots[j, index_query_per_img] += queries[j, i, :len(index_query_per_img)]

前面加一行

index_query_per_img = np.array(index_query_per_img)

报错3:Tensor 18362 changes after optimization. The max diff is 2.288818359375e-05.

BEVFormer转onnx,并优化_第7张图片

 提示优化结果有偏差,初步定位了一下位置,发现在后处理部分,也就是bevformer.py的self.pts_bbox_head.get_bboxes,暂且把这个去掉,让def simple_test_pts(self, x, img_metas, prev_bev=None, rescale=False):只输出outs,如下所示

    def simple_test_pts(self, x, img_metas, prev_bev=None, rescale=False):
        """Test function"""
        outs = self.pts_bbox_head(x, img_metas, prev_bev=prev_bev)
        return outs

然后重新生成onnx,并且优化

至此,bevformer_tiny的onnx转换和优化工作初步完成!!! 

排错不易,点赞加收藏哦!!!

你可能感兴趣的:(python,开发语言,深度学习,transformer)