【Android Framework系列】第3章 Zygote进程相关

1 Zygote简介

Zygote是Android中最重要的一个进程,Zygote进程和Init进程、SystemServer进程是Android最重要的三大进程Zygote是Android系统创建新进程的核心进程,负责启动Dalvik虚拟机,加载一些必要的系统资源和系统类,启动system_server进程,随后进入等待处理app应用请求。
在Android系统中,应用程序进程都是由Zygote进程孵化出来的,而Zygote进程是由Init进程启动的。Zygote进程在启动时会创建一个Dalvik虚拟机实例,每当它孵化一个新的应用程序进程时,都会将这个Dalvik虚拟机实例复制到新的应用程序进程里面去,从而使得每一个应用程序进程都有一个独立的Dalvik虚拟机实例。

Zygote涉及的类:

frameworks/base/cmds/app_process/app_main.cpp
frameworks/base/core/jni/AndroidRuntime.cpp
frameworks/base/core/java/com/android/internal/os/
  - Zygote.java
  - ZygoteInit.java
  - ZygoteServer.java
  - ZygoteConnection.java

2 Zygote启动

本文基于Android10(Q)的源码做分析

2.1 init进程解析init.rc脚本

Zygote由init进程解析init.rc脚本启动的。脚本传入app_process的main方法做分割,根据字符串命令做相应逻辑。

现在机器分为32位和64位,Zygote的启动脚本init.rc也各有区别:

  • init.zygote32.rc:zygote进程对应的执行程序是app_process(纯32bit模式)
  • init.zygote64.rc:zygote进程对应的执行程序是app_process64(纯64bit模式)
  • init.zygote32_64.rc:启动两个zygote进程,对应的执行程序分别是app_process32(主模式)、app_process64
  • init.zygote64_32.rc:启动两个zygote进程,对应的执行程序分别是app_process64(主模式)、app_process32

zygote要执行的程序便是system/bin/app_process,它的源代码在app_main.cpp。我们先来看看app_main是如何处理脚本命令:
frameworks/base/cmds/app_process/app_main.cpp

165  #if defined(__LP64__)
166  static const char ABI_LIST_PROPERTY[] = "ro.product.cpu.abilist64";
167  static const char ZYGOTE_NICE_NAME[] = "zygote64";
168  #else
169  static const char ABI_LIST_PROPERTY[] = "ro.product.cpu.abilist32";
170  static const char ZYGOTE_NICE_NAME[] = "zygote";
171  #endif
172
173  int main(int argc, char* const argv[])
174  {
......
256      // Parse runtime arguments.  Stop at first unrecognized option.
257      bool zygote = false;
258      bool startSystemServer = false;
259      bool application = false;
260      String8 niceName;
261      String8 className;
262  
263      ++i;  // Skip unused "parent dir" argument.
264      while (i < argc) {
265          const char* arg = argv[i++];
266          if (strcmp(arg, "--zygote") == 0) {
267              zygote = true;
268              niceName = ZYGOTE_NICE_NAME;
269          } else if (strcmp(arg, "--start-system-server") == 0) {
270              startSystemServer = true;
271          } else if (strcmp(arg, "--application") == 0) {
272              application = true;
273          } else if (strncmp(arg, "--nice-name=", 12) == 0) {
274              niceName.setTo(arg + 12);
275          } else if (strncmp(arg, "--", 2) != 0) {
276              className.setTo(arg);
277              break;
278          } else {
279              --i;
280              break;
281          }
282      }
......
309          if (startSystemServer) {
310              args.add(String8("start-system-server"));
311          }
......
331      if (!niceName.isEmpty()) {
332          runtime.setArgv0(niceName.string(), true /* setProcName */);
333      }
334  
335      if (zygote) {
336          runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
337      } else if (className) {
338          runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
339      } else {
340          fprintf(stderr, "Error: no class name or --zygote supplied.\n");
341          app_usage();
342          LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
343      }
344  }

我们拿init.zygote64.rc为例:

1 service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server
2     class main
3     priority -20
4     user root
5     group root readproc reserved_disk
6     socket zygote stream 660 root system
7     socket usap_pool_primary stream 660 root system
8     onrestart write /sys/android_power/request_state wake
9     onrestart write /sys/power/state on
10     onrestart restart audioserver
11     onrestart restart cameraserver
12     onrestart restart media
13     onrestart restart netd
14     onrestart restart wificond
15     writepid /dev/cpuset/foreground/tasks

主要是这个脚本命令:service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server

实际上会被分割成:
service:服务标识
zygote:表示要开启的服务名字
/system/bin/app_process64:服务对应的路径
-Xzygote:作为虚拟机启动时所需要的参数,在AndroidRuntime.cpp中的 startVm() 中调用JNI_CreateJavaVM 使用到
/system/bin:代表虚拟机程序所在目录,因为 app_process 可以不和虚拟机在一个目录,所以 app_process 需要知道虚拟机所在的目录
–zygote :指明以 ZygoteInit 类作为入口,否则需要指定需要执行的类名
–start-system-server:仅在有 --zygote 参数时可用,告知 ZygoteInit 启动完毕后孵化出的第一个进程是 SystemServer

  1. 第一个if中"--zygote"命中,zygote变量置为true表示要启动zygote进程,并将进程名改成了zygotezygote64
  2. 第二个if中"--start-system-server"命中,startSystemServer变量置为true表示要启动SystemServer进程

app_main.cppmain方法执行后,ZygoteInit已经通过runtime.start("com.android.internal.os.ZygoteInit", args, zygote);被启动了

2.2 AndroidRuntime启动ZygoteInit

其中runtime就是AndroidRuntime类,我们来看看AndroidRuntimestart方法
/frameworks/base/core/jni/AndroidRuntime.cpp

1112  /*
1113   * Start the Android runtime.  This involves starting the virtual machine
1114   * and calling the "static void main(String[] args)" method in the class
1115   * named by "className".
1116   *
1117   * Passes the main function two arguments, the class name and the specified
1118   * options string.
1119   */
1120  void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
1121  {
......
1164      /* start the virtual machine */
1165      JniInvocation jni_invocation;
1166      jni_invocation.Init(NULL);
1167      JNIEnv* env;
1168      if (startVm(&mJavaVM, &env, zygote) != 0) {
1169          return;
1170      }
1171      onVmCreated(env);
1172  
1173      /*
1174       * Register android functions.
1175       */
1176      if (startReg(env) < 0) {
1177          ALOGE("Unable to register all android natives\n");
1178          return;
1179      }
......
1203  
1204      /*
1205       * Start VM.  This thread becomes the main thread of the VM, and will
1206       * not return until the VM exits.
1207       */
1208      char* slashClassName = toSlashClassName(className != NULL ? className : "");
1209      jclass startClass = env->FindClass(slashClassName);
1210      if (startClass == NULL) {
1211          ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
1212          /* keep going */
1213      } else {
1214          jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
1215              "([Ljava/lang/String;)V");
1216          if (startMeth == NULL) {
1217              ALOGE("JavaVM unable to find main() in '%s'\n", className);
1218              /* keep going */
1219          } else {
1220              env->CallStaticVoidMethod(startClass, startMeth, strArray);
1226          }
1227      }
......
1235  }

对虚拟机和JNI方法的一些注册后,通过CallStaticVoidMethod来调用传过来的类名的main函数,我们传递过来的类名是com.android.internal.os.ZygoteInit
AndroidRuntime中主要做了这三件事:

  1. startVm() 创建虚拟机
  2. startReg() 动态注册 java 调用 native 的 jni
  3. 反射调用 ZygoteInit 的 main()

2.3 ZygoteInit初始化

AndroidRuntimeNative层创建了Zygote,并且通过AndroidRuntime.start()Native层转到Java层ZygoteInit的main()入口,ZygoteInit的main()方法是Android启动的第一个Java进程主方法
/frameworks/base/core/java/com/android/internal/os/ZygoteInit.java

818      @UnsupportedAppUsage
819      public static void main(String argv[]) {
820          ZygoteServer zygoteServer = null;
......
833          Runnable caller;
834          try {
......
847              boolean startSystemServer = false;
848              String zygoteSocketName = "zygote";
849              String abiList = null;
850              boolean enableLazyPreload = false;
851              for (int i = 1; i < argv.length; i++) {
852                  if ("start-system-server".equals(argv[i])) {
853                      startSystemServer = true;
854                  } else if ("--enable-lazy-preload".equals(argv[i])) {
855                      enableLazyPreload = true;
856                  } else if (argv[i].startsWith(ABI_LIST_ARG)) {
857                      abiList = argv[i].substring(ABI_LIST_ARG.length());
858                  } else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
859                      zygoteSocketName = argv[i].substring(SOCKET_NAME_ARG.length());
860                  } else {
861                      throw new RuntimeException("Unknown command line argument: " + argv[i]);
862                  }
863              }
864  
865              final boolean isPrimaryZygote = zygoteSocketName.equals(Zygote.PRIMARY_SOCKET_NAME);
866  
867              if (abiList == null) {
868                  throw new RuntimeException("No ABI list supplied.");
869              }
870  
871              // In some configurations, we avoid preloading resources and classes eagerly.
872              // In such cases, we will preload things prior to our first fork.
873              if (!enableLazyPreload) {
......
877                  preload(bootTimingsTraceLog);
......
881              } else {
882                  Zygote.resetNicePriority();
883              }
......
896              Zygote.initNativeState(isPrimaryZygote);
897  
898              ZygoteHooks.stopZygoteNoThreadCreation();
899  
900              zygoteServer = new ZygoteServer(isPrimaryZygote);
901  
902              if (startSystemServer) {
903                  Runnable r = forkSystemServer(abiList, zygoteSocketName, zygoteServer);
904  
905                  // {@code r == null} in the parent (zygote) process, and {@code r != null} in the
906                  // child (system_server) process.
907                  if (r != null) {
908                      r.run();
909                      return;
910                  }
911              }
912  
913              Log.i(TAG, "Accepting command socket connections");
914  
915              // The select loop returns early in the child process after a fork and
916              // loops forever in the zygote.
917              caller = zygoteServer.runSelectLoop(abiList);
918          } catch (Throwable ex) {
919              Log.e(TAG, "System zygote died with exception", ex);
920              throw ex;
921          } finally {
922              if (zygoteServer != null) {
923                  zygoteServer.closeServerSocket();
924              }
925          }
926  
927          // We're in the child process and have exited the select loop. Proceed to execute the
928          // command.
929          if (caller != null) {
930              caller.run();
931          }
932      }

主要做了3件事:

  1. preload()预先加载系统资源,如系统类、资源、系统共享库等
  2. 创建 ZygoteServer,其实就是 ServerSocket 循环等待通知 fork 子进程
  3. 创建 SystemServer进程

2.3.1 preload()

preload():资源准备,包括类加载,资源加载等

135      static void preload(TimingsTraceLog bootTimingsTraceLog) {
138          beginPreload();
141          preloadClasses();
144          cacheNonBootClasspathClassLoaders();
147          preloadResources();
150          nativePreloadAppProcessHALs();
153          maybePreloadGraphicsDriver();
155          preloadSharedLibraries();
156          preloadTextResources();
157          // Ask the WebViewFactory to do any initialization that must run in the zygote process,
158          // for memory sharing purposes.
159          WebViewFactory.prepareWebViewInZygote();
160          endPreload();
161          warmUpJcaProviders();
164          sPreloadComplete = true;
165      }
......
244      /**
245       * Performs Zygote process initialization. Loads and initializes commonly used classes.
246       *
247       * Most classes only cause a few hundred bytes to be allocated, but a few will allocate a dozen
248       * Kbytes (in one case, 500+K).
249       */
250      private static void preloadClasses() {
251          final VMRuntime runtime = VMRuntime.getRuntime();
252  
253          InputStream is;
254          try {
255              is = new FileInputStream(PRELOADED_CLASSES);
256          } catch (FileNotFoundException e) {
257              Log.e(TAG, "Couldn't find " + PRELOADED_CLASSES + ".");
258              return;
259          }
260  
261          Log.i(TAG, "Preloading classes...");
262          long startTime = SystemClock.uptimeMillis();
263  
264          // Drop root perms while running static initializers.
265          final int reuid = Os.getuid();
266          final int regid = Os.getgid();
267  
268          // We need to drop root perms only if we're already root. In the case of "wrapped"
269          // processes (see WrapperInit), this function is called from an unprivileged uid
270          // and gid.
271          boolean droppedPriviliges = false;
272          if (reuid == ROOT_UID && regid == ROOT_GID) {
273              try {
274                  Os.setregid(ROOT_GID, UNPRIVILEGED_GID);
275                  Os.setreuid(ROOT_UID, UNPRIVILEGED_UID);
276              } catch (ErrnoException ex) {
277                  throw new RuntimeException("Failed to drop root", ex);
278              }
279  
280              droppedPriviliges = true;
281          }
282  
283          // Alter the target heap utilization.  With explicit GCs this
284          // is not likely to have any effect.
285          float defaultUtilization = runtime.getTargetHeapUtilization();
286          runtime.setTargetHeapUtilization(0.8f);
287  
288          try {
289              BufferedReader br =
290                      new BufferedReader(new InputStreamReader(is), Zygote.SOCKET_BUFFER_SIZE);
291  
292              int count = 0;
293              String line;
294              while ((line = br.readLine()) != null) {
295                  // Skip comments and blank lines.
296                  line = line.trim();
297                  if (line.startsWith("#") || line.equals("")) {
298                      continue;
299                  }
300  
301                  Trace.traceBegin(Trace.TRACE_TAG_DALVIK, line);
302                  try {
303                      if (false) {
304                          Log.v(TAG, "Preloading " + line + "...");
305                      }
306                      // Load and explicitly initialize the given class. Use
307                      // Class.forName(String, boolean, ClassLoader) to avoid repeated stack lookups
308                      // (to derive the caller's class-loader). Use true to force initialization, and
309                      // null for the boot classpath class-loader (could as well cache the
310                      // class-loader of this class in a variable).
311                      Class.forName(line, true, null);
312                      count++;
313                  } catch (ClassNotFoundException e) {
314                      Log.w(TAG, "Class not found for preloading: " + line);
315                  } catch (UnsatisfiedLinkError e) {
316                      Log.w(TAG, "Problem preloading " + line + ": " + e);
317                  } catch (Throwable t) {
318                      Log.e(TAG, "Error preloading " + line + ".", t);
319                      if (t instanceof Error) {
320                          throw (Error) t;
321                      }
322                      if (t instanceof RuntimeException) {
323                          throw (RuntimeException) t;
324                      }
325                      throw new RuntimeException(t);
326                  }
327                  Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
328              }
329  
330              Log.i(TAG, "...preloaded " + count + " classes in "
331                      + (SystemClock.uptimeMillis() - startTime) + "ms.");
332          } catch (IOException e) {
333              Log.e(TAG, "Error reading " + PRELOADED_CLASSES + ".", e);
334          } finally {
335              IoUtils.closeQuietly(is);
336              // Restore default.
337              runtime.setTargetHeapUtilization(defaultUtilization);
338  
339              // Fill in dex caches with classes, fields, and methods brought in by preloading.
340              Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadDexCaches");
341              runtime.preloadDexCaches();
342              Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
343  
344              // Bring back root. We'll need it later if we're in the zygote.
345              if (droppedPriviliges) {
346                  try {
347                      Os.setreuid(ROOT_UID, ROOT_UID);
348                      Os.setregid(ROOT_GID, ROOT_GID);
349                  } catch (ErrnoException ex) {
350                      throw new RuntimeException("Failed to restore root", ex);
351                  }
352              }
353          }
354      }
......

382      /**
383       * Load in commonly used resources, so they can be shared across processes.
384       *
385       * These tend to be a few Kbytes, but are frequently in the 20-40K range, and occasionally even
386       * larger.
387       */
388      private static void preloadResources() {
389          final VMRuntime runtime = VMRuntime.getRuntime();
390  
391          try {
392              mResources = Resources.getSystem();
393              mResources.startPreloading();
394              if (PRELOAD_RESOURCES) {
395                  Log.i(TAG, "Preloading resources...");
396  
397                  long startTime = SystemClock.uptimeMillis();
398                  TypedArray ar = mResources.obtainTypedArray(
399                          com.android.internal.R.array.preloaded_drawables);
400                  int N = preloadDrawables(ar);
401                  ar.recycle();
402                  Log.i(TAG, "...preloaded " + N + " resources in "
403                          + (SystemClock.uptimeMillis() - startTime) + "ms.");
404  
405                  startTime = SystemClock.uptimeMillis();
406                  ar = mResources.obtainTypedArray(
407                          com.android.internal.R.array.preloaded_color_state_lists);
408                  N = preloadColorStateLists(ar);
409                  ar.recycle();
410                  Log.i(TAG, "...preloaded " + N + " resources in "
411                          + (SystemClock.uptimeMillis() - startTime) + "ms.");
412  
413                  if (mResources.getBoolean(
414                          com.android.internal.R.bool.config_freeformWindowManagement)) {
415                      startTime = SystemClock.uptimeMillis();
416                      ar = mResources.obtainTypedArray(
417                              com.android.internal.R.array.preloaded_freeform_multi_window_drawables);
418                      N = preloadDrawables(ar);
419                      ar.recycle();
420                      Log.i(TAG, "...preloaded " + N + " resource in "
421                              + (SystemClock.uptimeMillis() - startTime) + "ms.");
422                  }
423              }
424              mResources.finishPreloading();
425          } catch (RuntimeException e) {
426              Log.w(TAG, "Failure preloading resources", e);
427          }
428      }

preloadClasses()方法主要是从/system/etc/preloaded-classes文件中读取需要预加载的类名,然后通过Class.forname将该类加载到内存中,并会执行其中的一些静态方法(Java的类加载机制)。这里的重点是preloaded-classes文件,这个文件一般使用Android原生的文件,其路径在frameworks/base/config/preloaded-classes。

preloadResources()方法主要是做了以下几件事:
1.在Resources.startPreloading()方法中,调用updateConfiguration()方法为系统创建Configuration,这是后面应用和系统的一些配置来源。
2.从preloaded_drawables中获取预加载的drawables资源,并将其加载到内存中。preloaded_drawables字段在frameworks/base/core/res/res/values/arrays.xml中定义。
3.从preloaded_color_state_lists中获取预加载的color资源,并将其加载到内存中,preloaded_color_state_lists字段也是定义在frameworks/base/core/res/res/values/arrays.xml中。
4.如果支持自由窗口模式,则将preloaded_freeform_multi_window_drawables字段中定义的预加载的freeform drawables也加载进来。

2.3.2 ZygoteServer

ZygoteInit的main方法内实例化了ZygoteServer对象,并调用了其中runSelectLoop()closeServerSocket()方法。
/frameworks/base/core/java/com/android/internal/os/ZygoteServer.java

48  class ZygoteServer {
.......
88      /**
89       * Listening socket that accepts new server connections.
90       */
91      private LocalServerSocket mZygoteSocket;
......
142      /**
143       * Initialize the Zygote server with the Zygote server socket, USAP pool server socket, and USAP
144       * pool event FD.
145       *
146       * @param isPrimaryZygote  If this is the primary Zygote or not.
147       */
148      ZygoteServer(boolean isPrimaryZygote) {
151          if (isPrimaryZygote) {
152              mZygoteSocket = Zygote.createManagedSocketFromInitSocket(Zygote.PRIMARY_SOCKET_NAME);
153              mUsapPoolSocket =
154                      Zygote.createManagedSocketFromInitSocket(
155                              Zygote.USAP_POOL_PRIMARY_SOCKET_NAME);
156          } else {
157              mZygoteSocket = Zygote.createManagedSocketFromInitSocket(Zygote.SECONDARY_SOCKET_NAME);
158              mUsapPoolSocket =
159                      Zygote.createManagedSocketFromInitSocket(
160                              Zygote.USAP_POOL_SECONDARY_SOCKET_NAME);
161          }
166      }
......
176      /**
177       * Registers a server socket for zygote command connections. This opens the server socket
178       * at the specified name in the abstract socket namespace.
179       */
180      void registerServerSocketAtAbstractName(String socketName) {
181          if (mZygoteSocket == null) {
182              try {
183                  mZygoteSocket = new LocalServerSocket(socketName);
184                  mCloseSocketFd = false;
185              } catch (IOException ex) {
186                  throw new RuntimeException(
187                          "Error binding to abstract socket '" + socketName + "'", ex);
188              }
189          }
190      }
......
210      /**
211       * Close and clean up zygote sockets. Called on shutdown and on the
212       * child's exit path.
213       */
214      void closeServerSocket() {
215          try {
216              if (mZygoteSocket != null) {
217                  FileDescriptor fd = mZygoteSocket.getFileDescriptor();
218                  mZygoteSocket.close();
219                  if (fd != null && mCloseSocketFd) {
220                      Os.close(fd);
221                  }
222              }
223          } catch (IOException ex) {
224              Log.e(TAG, "Zygote:  error closing sockets", ex);
225          } catch (ErrnoException ex) {
226              Log.e(TAG, "Zygote:  error closing descriptor", ex);
227          }
228  
229          mZygoteSocket = null;
230      }
......
368      /**
369       * Runs the zygote process's select loop. Accepts new connections as
370       * they happen, and reads commands from connections one spawn-request's
371       * worth at a time.
372       */
373      Runnable runSelectLoop(String abiList) {
374          ArrayList<FileDescriptor> socketFDs = new ArrayList<FileDescriptor>();
375          ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();
376  
377          socketFDs.add(mZygoteSocket.getFileDescriptor());
378          peers.add(null);
379  
380          while (true) {
381              fetchUsapPoolPolicyPropsWithMinInterval();
382  
383              int[] usapPipeFDs = null;
384              StructPollfd[] pollFDs = null;
385  
386              // Allocate enough space for the poll structs, taking into account
387              // the state of the USAP pool for this Zygote (could be a
388              // regular Zygote, a WebView Zygote, or an AppZygote).
389              if (mUsapPoolEnabled) {
390                  usapPipeFDs = Zygote.getUsapPipeFDs();
391                  pollFDs = new StructPollfd[socketFDs.size() + 1 + usapPipeFDs.length];
392              } else {
393                  pollFDs = new StructPollfd[socketFDs.size()];
394              }
395  
396              /*
397               * For reasons of correctness the USAP pool pipe and event FDs
398               * must be processed before the session and server sockets.  This
399               * is to ensure that the USAP pool accounting information is
400               * accurate when handling other requests like API blacklist
401               * exemptions.
402               */
403  
404              int pollIndex = 0;
405              for (FileDescriptor socketFD : socketFDs) {
406                  pollFDs[pollIndex] = new StructPollfd();
407                  pollFDs[pollIndex].fd = socketFD;
408                  pollFDs[pollIndex].events = (short) POLLIN;
409                  ++pollIndex;
410              }
411  
412              final int usapPoolEventFDIndex = pollIndex;
413  
414              if (mUsapPoolEnabled) {
415                  pollFDs[pollIndex] = new StructPollfd();
416                  pollFDs[pollIndex].fd = mUsapPoolEventFD;
417                  pollFDs[pollIndex].events = (short) POLLIN;
418                  ++pollIndex;
419  
420                  for (int usapPipeFD : usapPipeFDs) {
421                      FileDescriptor managedFd = new FileDescriptor();
422                      managedFd.setInt$(usapPipeFD);
423  
424                      pollFDs[pollIndex] = new StructPollfd();
425                      pollFDs[pollIndex].fd = managedFd;
426                      pollFDs[pollIndex].events = (short) POLLIN;
427                      ++pollIndex;
428                  }
429              }
430  
431              try {
432                  Os.poll(pollFDs, -1);
433              } catch (ErrnoException ex) {
434                  throw new RuntimeException("poll failed", ex);
435              }
436  
437              boolean usapPoolFDRead = false;
438  
439              while (--pollIndex >= 0) {
440                  if ((pollFDs[pollIndex].revents & POLLIN) == 0) {
441                      continue;
442                  }
443  
444                  if (pollIndex == 0) {
445                      // Zygote server socket
446  
447                      ZygoteConnection newPeer = acceptCommandPeer(abiList);
448                      peers.add(newPeer);
449                      socketFDs.add(newPeer.getFileDescriptor());
450  
451                  } else if (pollIndex < usapPoolEventFDIndex) {
452                      // Session socket accepted from the Zygote server socket
453  
454                      try {
455                          ZygoteConnection connection = peers.get(pollIndex);
456                          final Runnable command = connection.processOneCommand(this);
457  
458                          // TODO (chriswailes): Is this extra check necessary?
459                          if (mIsForkChild) {
460                              // We're in the child. We should always have a command to run at this
461                              // stage if processOneCommand hasn't called "exec".
462                              if (command == null) {
463                                  throw new IllegalStateException("command == null");
464                              }
465  
466                              return command;
467                          } else {
468                              // We're in the server - we should never have any commands to run.
469                              if (command != null) {
470                                  throw new IllegalStateException("command != null");
471                              }
472  
473                              // We don't know whether the remote side of the socket was closed or
474                              // not until we attempt to read from it from processOneCommand. This
475                              // shows up as a regular POLLIN event in our regular processing loop.
476                              if (connection.isClosedByPeer()) {
477                                  connection.closeSocket();
478                                  peers.remove(pollIndex);
479                                  socketFDs.remove(pollIndex);
480                              }
481                          }
482                      } catch (Exception e) {
483                          if (!mIsForkChild) {
484                              // We're in the server so any exception here is one that has taken place
485                              // pre-fork while processing commands or reading / writing from the
486                              // control socket. Make a loud noise about any such exceptions so that
487                              // we know exactly what failed and why.
488  
489                              Slog.e(TAG, "Exception executing zygote command: ", e);
490  
491                              // Make sure the socket is closed so that the other end knows
492                              // immediately that something has gone wrong and doesn't time out
493                              // waiting for a response.
494                              ZygoteConnection conn = peers.remove(pollIndex);
495                              conn.closeSocket();
496  
497                              socketFDs.remove(pollIndex);
498                          } else {
499                              // We're in the child so any exception caught here has happened post
500                              // fork and before we execute ActivityThread.main (or any other main()
501                              // method). Log the details of the exception and bring down the process.
502                              Log.e(TAG, "Caught post-fork exception in child process.", e);
503                              throw e;
504                          }
505                      } finally {
506                          // Reset the child flag, in the event that the child process is a child-
507                          // zygote. The flag will not be consulted this loop pass after the Runnable
508                          // is returned.
509                          mIsForkChild = false;
510                      }
511                  } else {
512                      // Either the USAP pool event FD or a USAP reporting pipe.
513  
514                      // If this is the event FD the payload will be the number of USAPs removed.
515                      // If this is a reporting pipe FD the payload will be the PID of the USAP
516                      // that was just specialized.
517                      long messagePayload = -1;
518  
519                      try {
520                          byte[] buffer = new byte[Zygote.USAP_MANAGEMENT_MESSAGE_BYTES];
521                          int readBytes = Os.read(pollFDs[pollIndex].fd, buffer, 0, buffer.length);
522  
523                          if (readBytes == Zygote.USAP_MANAGEMENT_MESSAGE_BYTES) {
524                              DataInputStream inputStream =
525                                      new DataInputStream(new ByteArrayInputStream(buffer));
526  
527                              messagePayload = inputStream.readLong();
528                          } else {
529                              Log.e(TAG, "Incomplete read from USAP management FD of size "
530                                      + readBytes);
531                              continue;
532                          }
533                      } catch (Exception ex) {
534                          if (pollIndex == usapPoolEventFDIndex) {
535                              Log.e(TAG, "Failed to read from USAP pool event FD: "
536                                      + ex.getMessage());
537                          } else {
538                              Log.e(TAG, "Failed to read from USAP reporting pipe: "
539                                      + ex.getMessage());
540                          }
541  
542                          continue;
543                      }
544  
545                      if (pollIndex > usapPoolEventFDIndex) {
546                          Zygote.removeUsapTableEntry((int) messagePayload);
547                      }
548  
549                      usapPoolFDRead = true;
550                  }
551              }
552  
553              // Check to see if the USAP pool needs to be refilled.
554              if (usapPoolFDRead) {
555                  int[] sessionSocketRawFDs =
556                          socketFDs.subList(1, socketFDs.size())
557                                  .stream()
558                                  .mapToInt(fd -> fd.getInt$())
559                                  .toArray();
560  
561                  final Runnable command = fillUsapPool(sessionSocketRawFDs);
562  
563                  if (command != null) {
564                      return command;
565                  }
566              }
567          }
568      }
569  }

主要做3件事:

  1. 创建ZygoteServer:ZygoteServer初始化,内部对ServerSocket进行了初始化,为Zygote提供了通信的能力。
  2. zygoteServer.runSelectLoop():当zygote进程返回到main()方法后执行,从名字上和注释来看,这个方法应该是一个死循环,是不断进行循环执行命令的方法,主要做了两件事:​
    1.每次循环都重新构建监听文件列表,主要是ZygoteServer的socket文件(ZygoteServer的socket和其他应用进程连接过来的socket)和usap文件节点(目前看来,zygote默认是没有使用,作用未明,不做分析)。
    ​2.监听文件列表,并从中获取命令执行。
  3. zygoteServer.closeServerSocket():在循环后,关闭ServerSocket

2.3.3 创建SystemServer进程

718      /**
719       * Prepare the arguments and forks for the system server process.
720       *
721       * @return A {@code Runnable} that provides an entrypoint into system_server code in the child
722       * process; {@code null} in the parent.
723       */
724      private static Runnable forkSystemServer(String abiList, String socketName,
725              ZygoteServer zygoteServer) {
726          long capabilities = posixCapabilitiesAsBits(
727                  OsConstants.CAP_IPC_LOCK,
728                  OsConstants.CAP_KILL,
729                  OsConstants.CAP_NET_ADMIN,
730                  OsConstants.CAP_NET_BIND_SERVICE,
731                  OsConstants.CAP_NET_BROADCAST,
732                  OsConstants.CAP_NET_RAW,
733                  OsConstants.CAP_SYS_MODULE,
734                  OsConstants.CAP_SYS_NICE,
735                  OsConstants.CAP_SYS_PTRACE,
736                  OsConstants.CAP_SYS_TIME,
737                  OsConstants.CAP_SYS_TTY_CONFIG,
738                  OsConstants.CAP_WAKE_ALARM,
739                  OsConstants.CAP_BLOCK_SUSPEND
740          );
741          /* Containers run without some capabilities, so drop any caps that are not available. */
742          StructCapUserHeader header = new StructCapUserHeader(
743                  OsConstants._LINUX_CAPABILITY_VERSION_3, 0);
744          StructCapUserData[] data;
745          try {
746              data = Os.capget(header);
747          } catch (ErrnoException ex) {
748              throw new RuntimeException("Failed to capget()", ex);
749          }
750          capabilities &= ((long) data[0].effective) | (((long) data[1].effective) << 32);
751  
752          /* Hardcoded command line to start the system server */
753          String args[] = {
754                  "--setuid=1000",
755                  "--setgid=1000",
756                  "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023,"
757                          + "1024,1032,1065,3001,3002,3003,3006,3007,3009,3010",
758                  "--capabilities=" + capabilities + "," + capabilities,
759                  "--nice-name=system_server",
760                  "--runtime-args",
761                  "--target-sdk-version=" + VMRuntime.SDK_VERSION_CUR_DEVELOPMENT,
762                  "com.android.server.SystemServer",
763          };
764          ZygoteArguments parsedArgs = null;
765  
766          int pid;
767  
768          try {
769              parsedArgs = new ZygoteArguments(args);
770              Zygote.applyDebuggerSystemProperty(parsedArgs);
771              Zygote.applyInvokeWithSystemProperty(parsedArgs);
772  
773              boolean profileSystemServer = SystemProperties.getBoolean(
774                      "dalvik.vm.profilesystemserver", false);
775              if (profileSystemServer) {
776                  parsedArgs.mRuntimeFlags |= Zygote.PROFILE_SYSTEM_SERVER;
777              }
778  
779              /* Request to fork the system server process */
780              pid = Zygote.forkSystemServer(
781                      parsedArgs.mUid, parsedArgs.mGid,
782                      parsedArgs.mGids,
783                      parsedArgs.mRuntimeFlags,
784                      null,
785                      parsedArgs.mPermittedCapabilities,
786                      parsedArgs.mEffectiveCapabilities);
787          } catch (IllegalArgumentException ex) {
788              throw new RuntimeException(ex);
789          }
790  
791          /* For child process */
792          if (pid == 0) {
793              if (hasSecondZygote(abiList)) {
794                  waitForSecondaryZygote(socketName);
795              }
796  
797              zygoteServer.closeServerSocket();
798              return handleSystemServerProcess(parsedArgs);
799          }
800  
801          return null;
802      }

forkSystemServer()
①调用Zygote.forkSystemServer()方法去fork一个新的进程出来。
②fork()后的子进程是SystemServer进程,则等待zygote的启动完成,并执行真正的SystemServer代码。

2.4 Zygote启动流程图

【Android Framework系列】第3章 Zygote进程相关_第1张图片

3 总结

所有的进程都由Zygote创建,zygote主要用来孵化system_server进程应用程序进程。在孵化出第一个进程system_server后通过runSelectLoop等待并处理消息,分裂应用程序进程仍由system_server控制,等待 AMS 给他发消息(告诉 zygote 创建进程),如app启动时创建子进程。

从AndroidRuntime到ZygoteInit,主要分为3大过程:

1、创建虚拟机——startVm():调用JNI虚拟机创建函数
2、注册JNI函数——startReg():前面已经创建虚拟机,这里给这个虚拟机注册一些JNI函数(后续java世界用到的函数是native实现,这里需要提前注册注册这些函数)
3、此时就要执行CallStaticViodMethod,通过这个函数将进入android精心打造的java世界,这个函数将调用com.android.internal.os.ZygoteInit的main函数

在 ZygoteInit.main函数中进入Java世界,主要有4个关键步骤:

1、预加载类和资源——preload()
主要是preloadClasses和preloadResources,其中preloadClasses一般是加载时间超过1250ms的类,因而需要在zygote预加载
2、建立IPC通信服务——初始化ZygoteServer,内部初始化了ZygoteSocket
zygote及系统中其他程序的通信并没有使用Binder,而是采用基于AF_UNIX类型的Socket,作用正是建立这个Socket
3、启动system_server——forkSystemServer()
这个函数会创建Java世界中系统Service所驻留的进程system_server,该进程是framework的核心,也是zygote孵化出的第一个进程。如果它死了,就会导致zygote自杀。
4、等待请求——runSelectLoop()
zygote从startSystemServer返回后,将进入第四个关键函数runSelectLoop,在第一个函数ZygoteServer中注册了一个用于IPC的Socket将在这里使用,这里Zygote采用高效的I/O多路复用机制,保证在没有客户端请求时或者数据处理时休眠,否则响应客户端的请求。等待 AMS 给他发消息(告诉 zygote 创建进程)。此时zygote完成了java世界的初创工作,调用runSelectLoop便开始休眠了,当收到请求或者数据处理便会随时醒来,继续工作。

4 面试题

1 init进程作用是什么

init进程起着承上启下的作用,Android本身是基于Linux而来的,init进程是Linux系统中用户空间的第一个进程。init进程属于一个守护进程,准确的说,它是Linux系统中用户控制的第一个进程,它的进程号为1(进程号为0的为内核进程),它的生命周期贯穿整个Linux内核运行的始终。Android中所有其它的进程共同的鼻祖均为init进程。
Android Q(10.0) 的init入口函数由原先的init.cpp 调整到了main.cpp,把各个阶段的操作分离开来,使代码更加简洁命令。
作为天子第1号进程,init被赋予了很多重要的职责,主要分为三个阶段:

  1. init进程第一阶段做的主要工作是挂载分区,创建设备节点和一些关键目录,初始化日志输出系统,启用SELinux安全策略。
  2. init进程第二阶段主要工作是初始化属性系统,解析SELinux的匹配规则,处理子进程终止信号,启动系统属性服务,可以说每一项都很关键,如果说第一阶段是为属性系统,SELinux做准备,那么第二阶段就是真正去把这些功能落实。
  3. init进行第三阶段主要是解析init.rc来启动其他进程,进入无限循环,进行子进程实时监控(守护)

其中第三阶段通过initrc启动其他进程,我们常见的比如启动Zygote进程启动SeviceManager进程等。

2 Zygote进程最原始的进程是什么进程(或者Zygote进程由来)

Zygote最开始是app_process,它是在 init 进程启动时被启动的,在app_main.cpp才被修改为 Zygote。

3 Zygote 是在内核空间还是在用户空间?

因为 init 进程的创建在用户空间,而 Zygote 是由 init 进程创建启动的,所以Zygote是在用户空间。

4 Zygote为什么需要用到Socket通信而不是Binder

Zygote是Android中的一个重要进程,它是启动应用程序进程的父进程。Zygote使用Socket来与应用程序进程进行通信,而不是使用Android中的IPC机制Binder,这是因为Socket和Binder有不同的优缺点,而在Zygote进程中使用Socket可以更好地满足Zygote进程的需求。

  1. Zygote 用 binder 通信会导致死锁
    假设 Zygote 使用 Binder 通信,因为 Binder 是支持多线程的,存在并发问题,而并发问题的解决方案就是加锁,如果进程 fork 是在多线程情况下运行,Binder 等待锁在锁机制下就可能会出现死锁。
  2. Zygote 用 binder 通信会导致读写错误
    根本原因在于要 new 一个 ProcessState 用于 Binder 通信时,需要 mmap 申请一片内存用以提供给内核进行数据交换使用。而如果直接 fork 了的话,子进程在进行 binder 通信时,内核还是会继续使用父进程申请的地址写数据,而此时会触发子进程 COW(Copy on Write),从而导致地址空间已经重新映射,而子进程还尝试访问之前父进程 mmap 的地址,会导致 SIGSEGV、SEGV_MAPERR段错误。
  3. Zygote初始化时,Binder还没开始初始化。
  4. Socket具有良好的跨平台性,能够在不同的操作系统和语言之间进行通信。这对于Zygote进程来说非常重要,因为它需要在不同的设备和架构上运行,并且需要与不同的应用程序进程进行通信。使用Socket可以让Zygote进程更加灵活和可扩展,因为它不需要考虑Binder所带来的特定限制和要求。
  5. Socket具有简单的API和易于使用的特点。Zygote进程需要快速启动并与应用程序进程建立通信,Socket提供了快速、可靠的通信方式,并且使用Socket API也很容易实现。相比之下,Binder需要更多的配置和维护工作,这对于Zygote进程来说可能会增加不必要的复杂性和开销。
  6. Socket在数据传输时具有更低的延迟和更高的吞吐量,这对于Zygote进程来说非常重要。Zygote进程需要在较短的时间内启动应用程序进程,并且需要传输大量的数据和代码,Socket的高性能和低延迟使其成为更好的选择。

总之,Zygote进程使用Socket而不是Binder是基于其优点和需求而做出的选择。虽然Binder在Android中扮演着重要的角色,但在某些情况下,使用Socket可以提供更好的性能和更大的灵活性。再者,Binder当初并不成熟,团队成员对于进程间通讯更倾向于用Socket,后面为了做了很多优化,才使得Binder通讯变得成熟稳定。

5 每个App都会将系统的资源,系统的类都加载一遍吗

zygote进程的作用:
1.创建一个Service端的Socket,开启一个ServerSocket实现和别的进程通信。
2.加载系统类,系统资源。
3.启动System Server进程

Zygote进程预加载系统资源后,然后通过它孵化出其他的虚拟机进程,进而共享虚拟机内存和框架层资源(共享内存),这样大幅度提高应用程序的启动和运行速度。

6 PMS 是干什么的,你是怎么理解PMS

包管理,包解析,结果缓存,提供查询接口。

  1. 遍历/data/app的文件夹
  2. 解压apk文件
  3. dom解析AndroidManifest.xml文件。

7 为什么会有AMS AMS的作用

  1. 查询PMS
  2. 反射生成对象
  3. 管理Activity生命周期

AMS缓存中心:ActivityThread

8 AMS如何管理Activity,探探AMS的执行原理

Activity在应用端由ActivityClientRecord负责描述其生命周期的过程与状态,但最终这些过程与状态是由ActivityManagerService(以下简称AMS)来管理和控制的

  1. BroadcastRecord:描述了应用进程的BroadcastReceiver,由BroadcastQueue负责管理。
  2. ServiceRecord:描述了Service服务组件,由ActiveServices负责管理。
  3. ContentProviderRecord:描述ContentProvider内容提供者,由ProviderMap管理。
  4. ActivityRecord:用于描述Activity,由ActivityStackSupervisor进行管理。

你可能感兴趣的:(Framework,Android,Java,android,zygote,framework)