math@常见的复数运算

文章目录

    • 复数一元运算
      • 共轭运算
        • 共轭运算的基本性质
    • 复数二元运算
      • 符号说明
      • 复数加减法
        • 复数相反数
      • 复数乘法
        • 复数乘方
      • 复数的倒数
      • 复数除法
      • 复数共轭运算下基础运算
      • 复数的运算性质小结
      • 求和式共轭与累积式共轭

  • 建立了复数的概念后,接着就是建立复数集里的各种运算
  • 由于实数是复数的一部分,所以建立复数运算时,应当遵循的一个原则是,作为复数的实数在集合里的运算和在实数集里的运算是一致的

复数一元运算

共轭运算

  • 根据共轭复数的定义,复数 z = a + b i z=a+bi z=a+bi的共轭复数为 z ‾ = a − b i \overline{z}=a-bi z=abi,

共轭运算的基本性质

  • 由共轭复数的定义
    • 实数a的共轭复数是a本身
    • 共轭运算满足自反律,即 z ‾ ‾ = z \overline{\overline{z}}=z z=z
  • 在复平面中,表示共轭复数的两个点关于 x x x轴(实轴)对称
  • 共轭复数具有相同的模: ∣ z ‾ ∣ = ∣ z ∣ = a 2 + b 2 |\overline{z}|=|z|=\sqrt{a^2+b^2} z=z=a2+b2
  • k z ‾ = k z ‾ \overline{kz}=k\overline{z} kz=kz
    • z = a + b i z=a+bi z=a+bi
    • k z = k ( a + b i ) = k a + k b i kz=k(a+bi)=ka+kbi kz=k(a+bi)=ka+kbi
    • k z ‾ = k a − k b i \overline{kz}=ka-kbi kz=kakbi
    • k z ‾ = k ( a − b i ) = k a − k b i k\overline{z}=k(a-bi)=ka-kbi kz=k(abi)=kakbi
    • 可见 k z ‾ = k z ‾ \overline{kz}=k\overline{z} kz=kz

复数二元运算

  • 以下讨论复数的加减乘除二元运算

符号说明

  • 设任意两个复数: z 1 = a + b i z_1=a+b_i z1=a+bi, z 2 = a 2 + b 2 i z_2=a_2+b_2i z2=a2+b2i, a i , b i ∈ R , i = 1 , 2 a_i,b_i\in{\mathbb{R}},i=1,2 ai,biR,i=1,2

复数加减法

  • 复数加法 z 1 + z 2 = ( a 1 + a 2 ) + ( b 1 + b 2 ) i z_1+z_2=(a_1+a_2)+(b_1+b_2)i z1+z2=(a1+a2)+(b1+b2)i该结果仍然是复数
  • 容易验证加法满足交换律和结合律

复数相反数

  • z = a + b i z=a+bi z=a+bi,由复数加法定义有 a + b i + ( − a − b i ) = 0 a+bi+(-a-bi)=0 a+bi+(abi)=0,称 − a − b i -a-bi abi(即 − ( a + b i ) -(a+bi) (a+bi))为 z z z的相反数,记为 − z -z z

  • 根据相反数的概念,规定复数减法: z 1 − z 2 = ( a 1 − a 2 ) + ( b 1 − b 2 ) i z_1-z_2=(a_1-a_2)+(b_1-b_2)i z1z2=(a1a2)+(b1b2)i

  • 两个复数之差还是复数

复数乘法

  • z 1 z 2 = ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i z_1z_2=(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i z1z2=(a1a2b1b2)+(a1b2+a2b1)i

  • 可见两个复数的乘积仍为复数

    • 复数乘法可以按照多项式乘法的方式计算:
      • z 1 z 2 = ( a 1 + b 1 i ) ( a 2 + b 2 i ) z_1z_2=(a_1+b_1i)(a_2+b_2i) z1z2=(a1+b1i)(a2+b2i)
        • a 1 a 2 + a 1 b 2 i + a 2 b 1 i + b 1 b 2 i 2 a_1a_2+a_1b_2i+a_2b_1i+b_1b_2i^{2} a1a2+a1b2i+a2b1i+b1b2i2,其中 i 2 = − 1 i^2=-1 i2=1
        • ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i (a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i (a1a2b1b2)+(a1b2+a2b1)i
  • 容易验证,复数乘法满足交换律结合律,以及"乘法对加法"的分配律

  • z ⋅ z ‾ = ( a + b i ) ( a − b i ) = ( a 2 + b 2 ) + ( a b − a b ) i = a 2 + b 2 z\cdot{\overline{z}}=(a+bi)(a-bi)=(a^2+b^2)+(ab-ab)i=a^2+b^2 zz=(a+bi)(abi)=(a2+b2)+(abab)i=a2+b2

  • z 2 = ( a + b i ) 2 = ( a 2 − b 2 ) + 2 a b i z^2=(a+bi)^2=(a^2-b^2)+2abi z2=(a+bi)2=(a2b2)+2abi, z 2 ‾ = ( a 2 − b 2 ) − 2 a b i \overline{z^2}=(a^2-b^2)-2abi z2=(a2b2)2abi

  • z ‾ 2 = ( a − b i ) 2 = ( a 2 − b 2 ) − 2 a b i \overline{z}^2=(a-bi)^2=(a^2-b^2)-2abi z2=(abi)2=(a2b2)2abi

  • z z ‾ = ∣ z ∣ 2 = ∣ z ‾ ∣ 2 = a 2 + b 2 z\overline{z}=|z|^2=|\overline{z}|^2=a^2+b^2 zz=z2=z2=a2+b2

  • z 1 z 2 ‾ = ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i ‾ = ( a 1 a 2 − b 1 b 2 ) − ( a 1 b 2 + a 2 b 1 ) i \overline{z_1z_2}=\overline{(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i}=(a_1a_2-b_1b_2)-(a_1b_2+a_2b_1)i z1z2=(a1a2b1b2)+(a1b2+a2b1)i=(a1a2b1b2)(a1b2+a2b1)i

  • z 1 ‾    z 2 ‾ = ( a 1 − b 1 i ) ( a 2 − b 2 i ) = ( a 1 a 2 − b 1 b 2 ) − ( a 1 b 2 + a 2 b 1 ) i \overline{z_1}\;\overline{z_2}=(a_1-b_1i)(a_2-b_2i)=(a_1a_2-b_1b_2)-(a_1b_2+a_2b_1)i z1z2=(a1b1i)(a2b2i)=(a1a2b1b2)(a1b2+a2b1)i

  • 综上:

    • z 2 ‾ = z ‾ 2 \overline{z^2}=\overline{z}^2 z2=z2
    • z 1 z 2 ‾ = z 1 ‾    z 2 ‾ \overline{z_1z_2}=\overline{z_1}\;\overline{z_2} z1z2=z1z2

复数乘方

  • z m z n = z m + n z^mz^n=z^{m+n} zmzn=zm+n
  • ( z m ) n = z n m (z^m)^{n}=z^{nm} (zm)n=znm
  • ( z 1 z 2 ) n = z 1 2 z 2 2 (z_1z_2)^{n}=z_1^2z_2^2 (z1z2)n=z12z22
  • 虚数单位i的方幂
    • i 1 = i i^1=i i1=i
    • i 2 = − 1 i^2=-1 i2=1
    • i 3 = − i i^3=-i i3=i
    • i 4 = 1 i^4=1 i4=1
    • i 5 = i 4 i 1 = i i^5=i^4i^1=i i5=i4i1=i
    • 不难看出,第5个式子和第一个式子的结果相等,而 i n + 1 = i n ⋅ i i^{n+1}=i^{n}\cdot{i} in+1=ini,由此可见,数列 a n = i n a_n=i^n an=in中,若存在 r ∈ N r\in\mathbb{N} rN使得 a r = a 1 a_r=a_1 ar=a1,则数列是某一个子序列的重复,不妨将子序列的长度记为 T T T,将最短的序列长度记为 T 0 T_0 T0
      • 使 a r = a 1 a_r=a_1 ar=a1成立的最小整数 r r r记为 r 0 r_0 r0,则 T 0 = r 0 − 1 T_0=r_0-1 T0=r01
      • 本例中, r 0 = 5 r_0=5 r0=5, T 0 = r 0 − 1 = 5 − 1 = 4 T_0=r_0-1=5-1=4 T0=r01=51=4
      • 因此数列 a n = i n a_n=i^n an=in i , − 1 , − i , 1 i,-1,-i,1 i,1,i,1的重复
      • 并且,可以进一步确定:
        • i 4 n + 1 = i i^{4n+1}=i i4n+1=i
        • i 4 n + 2 = − 1 i^{4n+2}=-1 i4n+2=1
        • i 4 n + 3 = − i i^{4n+3}=-i i4n+3=i
        • i 4 n = 1 i^{4n}=1 i4n=1
        • 其中 n = 1 , 2 , ⋯ n=1,2,\cdots n=1,2,
        • 例如, 99 = 4 × 24 ⋯ 3 99=4\times{24}\cdots{3} 99=4×243, i 99 = i 3 = i 2 ⋅ i = − i i^{99}=i^{3}=i^2\cdot{i}=-i i99=i3=i2i=i

复数的倒数

  • z = a + b i z=a+bi z=a+bi,若存在 z ′ z' z使得 z ⋅ z ′ = 1 z\cdot{z'}=1 zz=1 z ′ z' z称为 z z z的倒数,记为 z − 1 z^{-1} z1 1 z \frac{1}{z} z1
  • 用待定系数法计算 z ′ z' z:
    • z ′ = x + y i z'=x+yi z=x+yi z ⋅ z ′ = ( a + b i ) ( x + y i ) = ( a x − b y ) + ( a y + b x ) i = 1 z\cdot{z'}=(a+bi)(x+yi)=(ax-by)+(ay+bx)i=1 zz=(a+bi)(x+yi)=(axby)+(ay+bx)i=1
      • a x − b y = 1 ax-by=1 axby=1
      • a y + b x = 0 ay+bx=0 ay+bx=0,即 y = − b a x y=-\frac{b}{a}x y=abx,代入第一个方程
      • 解得 x = a a 2 + b 2 x=\frac{a}{a^2+b^2} x=a2+b2a; y = − b a 2 + b 2 y=-\frac{b}{a^2+b^2} y=a2+b2b
    • z − 1 = a a 2 + b 2 − b a 2 + b 2 i z^{-1}=\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i z1=a2+b2aa2+b2bi
      • z − 1 = 1 a 2 + b 2 ( a − b i ) z^{-1}=\frac{1}{a^2+b^2}(a-bi) z1=a2+b21(abi)= ∣ z ∣ − 2 z ‾ |z|^{-2}\overline{z} z2z= ( ∣ z ∣ 2 ) − 1 z ‾ (|z|^2)^{-1}\overline{z} (z2)1z= 1 ∣ z ∣ 2 z ‾ \frac{1}{|z|^2}\overline{z} z21z
      • z − 1 ‾ = 1 ∣ z ∣ 2 z ‾ ‾ \overline{z^{-1}}=\overline{\frac{1}{|z|^2}\overline{z}} z1=z21z= 1 ∣ z ∣ 2 z ‾ ‾ {\frac{1}{|z|^2}}\overline{\overline{z}} z21z= 1 ∣ z ∣ 2 z {\frac{1}{|z|^2}}z z21z
      • z ‾ − 1 = 1 z ‾ = z z ‾ z \overline{z}^{-1}=\frac{1}{\overline{z}}=\frac{z}{\overline{z}z} z1=z1=zzz
        • = z ∣ z ∣ 2 =\frac{z}{|z|^2} =z2z
      • 可见 z − 1 ‾ = ( z ‾ ) − 1 \overline{z^{-1}}=(\overline{z})^{-1} z1=(z)1

复数除法

  • 有了倒数概念,可以定义两个复数除法的运算法则

  • ( a 1 + b 1 i ) ÷ ( a 2 + b 2 i ) = a 1 + b 1 i a 2 + b 2 i = ( a 1 + b 1 i ) ( a 2 + b 2 i ) − 1 (a_1+b_1i)\div{(a_2+b_2i)}=\frac{a_1+b_1i}{a_2+b_2i}=(a_1+b_1i)(a_2+b_2i)^{-1} (a1+b1i)÷(a2+b2i)=a2+b2ia1+b1i=(a1+b1i)(a2+b2i)1

    • = ( a 1 + b 1 i ) ( a 2 2 + b 2 2 ) − 1 ( a 2 − b 2 i ) =(a_1+b_1i)(a_2^2+b_2^2)^{-1}(a_2-b_2i) =(a1+b1i)(a22+b22)1(a2b2i)
    • = [ ( a 1 a 2 + b 1 b 2 ) + ( a 2 b 1 − a 1 b 2 ) i ] ( a 2 2 + b 2 2 ) − 1 =[(a_1a_2+b_1b_2)+(a_2b_1-a_1b_2)i](a_{2}^2+b_2^2)^{-1} =[(a1a2+b1b2)+(a2b1a1b2)i](a22+b22)1
    • a 1 a 2 + b 1 b 2 a 2 2 + b 2 2 + a 2 b 1 − a 1 b 2 a 2 2 + b 2 2 i \frac{a_1a_2+b_1b_2}{a_{2}^2+b_2^2}+\frac{a_2b_1-a_1b_2}{a_{2}^2+b_2^2}i a22+b22a1a2+b1b2+a22+b22a2b1a1b2i
  • 上述结论不必可以将 z 1 z 2 \frac{z_1}{z_2} z2z1视为分式,分子分母同时乘以分母的共轭复数 z 2 ‾ \overline{z_2} z2

  • z 1 z 2 = z 1 z 2 ‾ z 2 z 2 ‾ = z 1 z 2 ‾ ∣ z 2 ∣ 2 \frac{z_1}{z_2}=\frac{z_1\overline{z_2}}{z_2\overline{z_2}} =\frac{z_1\overline{z_2}}{|z_2|^2} z2z1=z2z2z1z2=z22z1z2

    • 其中 z 1 z 2 ‾ z_1\overline{z_2} z1z2 ∣ z ∣ 2 |z|^2 z2分别使用乘法公式和模平方公式计算即可,分别为 ( a 1 a 2 + b 1 b 2 ) + ( a 2 b 1 − a 1 b 2 ) i (a_1a_2+b_1b_2)+(a_2b_1-a_1b_2)i (a1a2+b1b2)+(a2b1a1b2)i, a 2 2 + b 2 2 a_2^2+b_2^2 a22+b22

复数共轭运算下基础运算

  • z 1 + z 2 ‾ = ( a 1 + b 1 ) − ( b 1 + b 2 ) i \overline{z_1+z_2}=(a_1+b_1)-(b_1+b_2)i z1+z2=(a1+b1)(b1+b2)i

  • z 1 ‾ + z 2 ‾ = ( a 1 + a 2 ) − ( b 1 + b 2 ) i \overline{z_1}+\overline{z_2}=(a_1+a_2)-(b_1+b_2)i z1+z2=(a1+a2)(b1+b2)i

  • 可见共轭运算对加法运算满足分配律: z 1 + z 2 ‾ = z 1 ‾ + z 2 ‾ \overline{z_1+z_2}=\overline{z_1}+\overline{z_2} z1+z2=z1+z2

  • z 1 z 2 = ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i z_1z_2=(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i z1z2=(a1a2b1b2)+(a1b2+a2b1)i

  • z 1 z 2 ‾ = ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i ‾ = ( a 1 a 2 − b 1 b 2 ) − ( a 1 b 2 + a 2 b 1 ) i \overline{z_1z_2}=\overline{(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i}=(a_1a_2-b_1b_2)-(a_1b_2+a_2b_1)i z1z2=(a1a2b1b2)+(a1b2+a2b1)i=(a1a2b1b2)(a1b2+a2b1)i

  • z 1 ‾    z 2 ‾ = ( a 1 − b 1 i ) ( a 2 − b 2 i ) = ( a 1 a 2 − b 1 b 2 ) − ( a 1 b 2 + a 2 b 1 ) i \overline{z_1}\;\overline{z_2}=(a_1-b_1i)(a_2-b_2i)=(a_1a_2-b_1b_2)-(a_1b_2+a_2b_1)i z1z2=(a1b1i)(a2b2i)=(a1a2b1b2)(a1b2+a2b1)i

  • 可见,共轭运算对乘法运算满足分配律: z 1 z 2 ‾ = z 1 ‾    z 2 ‾ \overline{z_1z_2}=\overline{z_1}\;\overline{z_2} z1z2=z1z2

    • 特别的, − z ‾ = − z ‾ \overline{-z}=-\overline{z} z=z
  • ( z 1 z 2 ) ‾ = z 1 ⋅ z 2 − 1 ‾ = z 1 ‾ ⋅ z 2 − 1 ‾ = z 1 ‾ ⋅ z 2 ‾ − 1 = z 1 ‾ z 2 ‾ \overline{(\frac{z_1}{z_2})} =\overline{z_1\cdot{z_2^{-1}}} =\overline{z_1}\cdot\overline{z_2^{-1}} =\overline{z_1}\cdot{\overline{z_2}^{-1}} =\frac{\overline{z_1}}{\overline{z_2}} (z2z1)=z1z21=z1z21=z1z21=z2z1

  • 可见共轭运算对除法运算满足分配律

  • 复数共轭运算对方幂的性质: z n ‾ = z ‾ n \overline{z^n}=\overline{z}^n zn=zn

  • 证法1:

    • 对等式两边同时乘以 z ‾ \overline{z} z
      • 例如: z ‾ = z ‾ \overline{z}=\overline{z} z=z
      • L H S = z ‾ ⋅ z ‾ = z ⋅ z ‾ = z 2 ‾ LHS=\overline{z}\cdot\overline{z}=\overline{z\cdot{z}}=\overline{z^2} LHS=zz=zz=z2,逆用共轭运算对乘法运算的分配律
      • R H S = z ‾ ⋅ z ‾ RHS=\overline{z}\cdot{\overline{z}} RHS=zz= z ‾ 2 \overline{z}^2 z2,直接进行乘方运算
    • z ‾ = z ‾ \overline{z}=\overline{z} z=z执行上述操作 n − 1 n-1 n1次,可以得到: z n ‾ = z ‾ n \overline{z^n}=\overline{z}^n zn=zn
  • 证法2:

    • n = 2 n=2 n=2
      • z 2 ‾ = z ⋅ z ‾ = z ˉ z ˉ = z ˉ 2 \overline{z^2}=\overline{z\cdot{z}}=\bar{z}\bar{z}=\bar{z}^2 z2=zz=zˉzˉ=zˉ2,显然结论成立
    • n = k n=k n=k时,结论成立,即 z k ‾ = z ‾ k \overline{z^k}=\overline{z}^k zk=zk
      • n = k + 1 n=k+1 n=k+1时, z 3 ‾ = z 2 ⋅ z 1 ‾ = z 2 ‾ ⋅ z ˉ \overline{z^3}=\overline{z^2\cdot{z^1}}=\overline{z^2}\cdot\bar{z} z3=z2z1=z2zˉ= z ‾ 2 ⋅ z ‾ = z ‾ 3 \overline{z}^2\cdot{\overline{z}}=\overline{z}^3 z2z=z3
      • L H S = z k + 1 ‾ = z k ⋅ z ‾ LHS=\overline{z^{k+1}}=\overline{z^k\cdot{z}} LHS=zk+1=zkz= z k ‾ ⋅ z ‾ \overline{z^k}\cdot{\overline{z}} zkz
        • 代入归纳假设,得 L H S = z ‾ k ⋅ z ‾ LHS=\overline{z}^k\cdot{\overline{z}} LHS=zkz= z ‾ k + 1 \overline{z}^{k+1} zk+1
      • R H S = z ‾ k + 1 RHS=\overline{z}^{k+1} RHS=zk+1
      • 可见 n = k + 1 n=k+1 n=k+1时,结论依然成立
    • 综上,n取任意正整数结论都成立

复数的运算性质小结

  • 复数 (wikipedia.org)

  • 加法: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i 减法: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i 乘法: ( a + b i ) ( c + d i ) = a c + b c i + a d i + b d i 2 = ( a c − b d ) + ( b c + a d ) i 除法: ( a + b i ) ( c + d i ) = ( a + b i ) ( c − d i ) ( c + d i ) ( c − d i ) = ( a c + b d c 2 + d 2 ) + ( b c − a d c 2 + d 2 ) i 加法:(a+bi)+(c+di)=(a+c)+(b+d)i\\ 减法:(a+bi)-(c+di)=(a-c)+(b-d)i\\ 乘法:(a+bi)(c+di)=ac+bci+adi+bdi^{2}=(ac-bd)+(bc+ad)i\\ 除法:{\frac {(a+bi)}{(c+di)}} ={\frac {(a+bi)(c-di)}{(c+di)(c-di)}} =\left({ac+bd \over c^{2}+d^{2}}\right)+\left({bc-ad \over c^{2}+d^{2}}\right)i 加法:(a+bi)+(c+di)=(a+c)+(b+d)i减法:(a+bi)(c+di)=(ac)+(bd)i乘法:(a+bi)(c+di)=ac+bci+adi+bdi2=(acbd)+(bc+ad)i除法:(c+di)(a+bi)=(c+di)(cdi)(a+bi)(cdi)=(c2+d2ac+bd)+(c2+d2bcad)i

求和式共轭与累积式共轭

  • 这两条性质是共轭运算对加法(乘法)运算分配律的一般形式

  • ∑ a i ‾ = ∑ a i ‾ ∏ i a i ‾ = ∏ i a i ‾ ∑ i ∏ j a i , j i ‾ = ∑ i ∏ j a i , j i ‾ ∑ i k i ∏ j a i , j i ‾ = ∑ i k i ∏ j a i , j i ‾ \sum{\overline{a_i}}=\overline{\sum{a_i}} \\ \prod_{i}\overline{a_i}=\overline{\prod_{i}a_i} \\ \sum_{i}{\prod_{j}\overline{a_{i,j_i}}}= \overline{\sum_{i}{\prod_{j}a_{i,j_i}}} \\ \sum_{i}k_i{\prod_{j}\overline{a_{i,j_i}}}= \overline{\sum_{i}k_i{\prod_{j}a_{i,j_i}}} ai=aiiai=iaiijai,ji=ijai,jiikijai,ji=ikijai,ji

你可能感兴趣的:(数学)