设 z = a + b i z=a+bi z=a+bi,由复数加法定义有 a + b i + ( − a − b i ) = 0 a+bi+(-a-bi)=0 a+bi+(−a−bi)=0,称 − a − b i -a-bi −a−bi(即 − ( a + b i ) -(a+bi) −(a+bi))为 z z z的相反数,记为 − z -z −z
根据相反数的概念,规定复数减法: z 1 − z 2 = ( a 1 − a 2 ) + ( b 1 − b 2 ) i z_1-z_2=(a_1-a_2)+(b_1-b_2)i z1−z2=(a1−a2)+(b1−b2)i
两个复数之差还是复数
z 1 z 2 = ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i z_1z_2=(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i z1z2=(a1a2−b1b2)+(a1b2+a2b1)i
可见两个复数的乘积仍为复数
容易验证,复数乘法满足交换律和结合律,以及"乘法对加法"的分配律
z ⋅ z ‾ = ( a + b i ) ( a − b i ) = ( a 2 + b 2 ) + ( a b − a b ) i = a 2 + b 2 z\cdot{\overline{z}}=(a+bi)(a-bi)=(a^2+b^2)+(ab-ab)i=a^2+b^2 z⋅z=(a+bi)(a−bi)=(a2+b2)+(ab−ab)i=a2+b2
z 2 = ( a + b i ) 2 = ( a 2 − b 2 ) + 2 a b i z^2=(a+bi)^2=(a^2-b^2)+2abi z2=(a+bi)2=(a2−b2)+2abi, z 2 ‾ = ( a 2 − b 2 ) − 2 a b i \overline{z^2}=(a^2-b^2)-2abi z2=(a2−b2)−2abi
z ‾ 2 = ( a − b i ) 2 = ( a 2 − b 2 ) − 2 a b i \overline{z}^2=(a-bi)^2=(a^2-b^2)-2abi z2=(a−bi)2=(a2−b2)−2abi
z z ‾ = ∣ z ∣ 2 = ∣ z ‾ ∣ 2 = a 2 + b 2 z\overline{z}=|z|^2=|\overline{z}|^2=a^2+b^2 zz=∣z∣2=∣z∣2=a2+b2
z 1 z 2 ‾ = ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i ‾ = ( a 1 a 2 − b 1 b 2 ) − ( a 1 b 2 + a 2 b 1 ) i \overline{z_1z_2}=\overline{(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i}=(a_1a_2-b_1b_2)-(a_1b_2+a_2b_1)i z1z2=(a1a2−b1b2)+(a1b2+a2b1)i=(a1a2−b1b2)−(a1b2+a2b1)i
z 1 ‾ z 2 ‾ = ( a 1 − b 1 i ) ( a 2 − b 2 i ) = ( a 1 a 2 − b 1 b 2 ) − ( a 1 b 2 + a 2 b 1 ) i \overline{z_1}\;\overline{z_2}=(a_1-b_1i)(a_2-b_2i)=(a_1a_2-b_1b_2)-(a_1b_2+a_2b_1)i z1z2=(a1−b1i)(a2−b2i)=(a1a2−b1b2)−(a1b2+a2b1)i
综上:
有了倒数概念,可以定义两个复数除法的运算法则
( a 1 + b 1 i ) ÷ ( a 2 + b 2 i ) = a 1 + b 1 i a 2 + b 2 i = ( a 1 + b 1 i ) ( a 2 + b 2 i ) − 1 (a_1+b_1i)\div{(a_2+b_2i)}=\frac{a_1+b_1i}{a_2+b_2i}=(a_1+b_1i)(a_2+b_2i)^{-1} (a1+b1i)÷(a2+b2i)=a2+b2ia1+b1i=(a1+b1i)(a2+b2i)−1
上述结论不必可以将 z 1 z 2 \frac{z_1}{z_2} z2z1视为分式,分子分母同时乘以分母的共轭复数 z 2 ‾ \overline{z_2} z2
z 1 z 2 = z 1 z 2 ‾ z 2 z 2 ‾ = z 1 z 2 ‾ ∣ z 2 ∣ 2 \frac{z_1}{z_2}=\frac{z_1\overline{z_2}}{z_2\overline{z_2}} =\frac{z_1\overline{z_2}}{|z_2|^2} z2z1=z2z2z1z2=∣z2∣2z1z2
z 1 + z 2 ‾ = ( a 1 + b 1 ) − ( b 1 + b 2 ) i \overline{z_1+z_2}=(a_1+b_1)-(b_1+b_2)i z1+z2=(a1+b1)−(b1+b2)i
z 1 ‾ + z 2 ‾ = ( a 1 + a 2 ) − ( b 1 + b 2 ) i \overline{z_1}+\overline{z_2}=(a_1+a_2)-(b_1+b_2)i z1+z2=(a1+a2)−(b1+b2)i
可见共轭运算对加法运算满足分配律: z 1 + z 2 ‾ = z 1 ‾ + z 2 ‾ \overline{z_1+z_2}=\overline{z_1}+\overline{z_2} z1+z2=z1+z2
z 1 z 2 = ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i z_1z_2=(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i z1z2=(a1a2−b1b2)+(a1b2+a2b1)i
z 1 z 2 ‾ = ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i ‾ = ( a 1 a 2 − b 1 b 2 ) − ( a 1 b 2 + a 2 b 1 ) i \overline{z_1z_2}=\overline{(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i}=(a_1a_2-b_1b_2)-(a_1b_2+a_2b_1)i z1z2=(a1a2−b1b2)+(a1b2+a2b1)i=(a1a2−b1b2)−(a1b2+a2b1)i
z 1 ‾ z 2 ‾ = ( a 1 − b 1 i ) ( a 2 − b 2 i ) = ( a 1 a 2 − b 1 b 2 ) − ( a 1 b 2 + a 2 b 1 ) i \overline{z_1}\;\overline{z_2}=(a_1-b_1i)(a_2-b_2i)=(a_1a_2-b_1b_2)-(a_1b_2+a_2b_1)i z1z2=(a1−b1i)(a2−b2i)=(a1a2−b1b2)−(a1b2+a2b1)i
可见,共轭运算对乘法运算满足分配律: z 1 z 2 ‾ = z 1 ‾ z 2 ‾ \overline{z_1z_2}=\overline{z_1}\;\overline{z_2} z1z2=z1z2
( z 1 z 2 ) ‾ = z 1 ⋅ z 2 − 1 ‾ = z 1 ‾ ⋅ z 2 − 1 ‾ = z 1 ‾ ⋅ z 2 ‾ − 1 = z 1 ‾ z 2 ‾ \overline{(\frac{z_1}{z_2})} =\overline{z_1\cdot{z_2^{-1}}} =\overline{z_1}\cdot\overline{z_2^{-1}} =\overline{z_1}\cdot{\overline{z_2}^{-1}} =\frac{\overline{z_1}}{\overline{z_2}} (z2z1)=z1⋅z2−1=z1⋅z2−1=z1⋅z2−1=z2z1
可见共轭运算对除法运算满足分配律
复数共轭运算对方幂的性质: z n ‾ = z ‾ n \overline{z^n}=\overline{z}^n zn=zn
证法1:
证法2:
复数 (wikipedia.org)
加法: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i 减法: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i 乘法: ( a + b i ) ( c + d i ) = a c + b c i + a d i + b d i 2 = ( a c − b d ) + ( b c + a d ) i 除法: ( a + b i ) ( c + d i ) = ( a + b i ) ( c − d i ) ( c + d i ) ( c − d i ) = ( a c + b d c 2 + d 2 ) + ( b c − a d c 2 + d 2 ) i 加法:(a+bi)+(c+di)=(a+c)+(b+d)i\\ 减法:(a+bi)-(c+di)=(a-c)+(b-d)i\\ 乘法:(a+bi)(c+di)=ac+bci+adi+bdi^{2}=(ac-bd)+(bc+ad)i\\ 除法:{\frac {(a+bi)}{(c+di)}} ={\frac {(a+bi)(c-di)}{(c+di)(c-di)}} =\left({ac+bd \over c^{2}+d^{2}}\right)+\left({bc-ad \over c^{2}+d^{2}}\right)i 加法:(a+bi)+(c+di)=(a+c)+(b+d)i减法:(a+bi)−(c+di)=(a−c)+(b−d)i乘法:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac−bd)+(bc+ad)i除法:(c+di)(a+bi)=(c+di)(c−di)(a+bi)(c−di)=(c2+d2ac+bd)+(c2+d2bc−ad)i
这两条性质是共轭运算对加法(乘法)运算分配律的一般形式
∑ a i ‾ = ∑ a i ‾ ∏ i a i ‾ = ∏ i a i ‾ ∑ i ∏ j a i , j i ‾ = ∑ i ∏ j a i , j i ‾ ∑ i k i ∏ j a i , j i ‾ = ∑ i k i ∏ j a i , j i ‾ \sum{\overline{a_i}}=\overline{\sum{a_i}} \\ \prod_{i}\overline{a_i}=\overline{\prod_{i}a_i} \\ \sum_{i}{\prod_{j}\overline{a_{i,j_i}}}= \overline{\sum_{i}{\prod_{j}a_{i,j_i}}} \\ \sum_{i}k_i{\prod_{j}\overline{a_{i,j_i}}}= \overline{\sum_{i}k_i{\prod_{j}a_{i,j_i}}} ∑ai=∑aii∏ai=i∏aii∑j∏ai,ji=i∑j∏ai,jii∑kij∏ai,ji=i∑kij∏ai,ji