【考研思维题】【哈希表 || 什么时候用哈希表呢?快速查询的时候】【我们一起60天准备考研算法面试(大全)-第九天 9/60】

专注 效率 记忆
预习 笔记 复习 做题

欢迎观看我的博客,如有问题交流,欢迎评论区留言,一定尽快回复!(大家可以去看我的专栏,是所有文章的目录)
 
文章字体风格:
红色文字表示:重难点★✔
蓝色文字表示:思路以及想法★✔
 
如果大家觉得有帮助的话,感谢大家帮忙
点赞!收藏!转发!

本博客带大家一起学习,我们不图快,只求稳扎稳打。
由于我高三是在家自学的,经验教训告诉我,学习一定要长期积累,并且复习,所以我推出此系列。
只求每天坚持40分钟,一周学5天,复习2天
也就是一周学10道题
60天后我们就可以学完81道题,相信60天后,我们一定可以有扎实的代码基础!我们每天就40分钟,和我一起坚持下去吧!
qq群:878080619

第九天【考研408-数据结构(笔试)】

  • 十、哈希表
    • 1. 模拟散列表
        • 开散列方法(拉链法)
        • 开放寻址法代码
            • 本质:(最多存1e5个数)
    • 2. 未出现过的最小正整数( 2018年全国硕士研究生招生考试 )

十、哈希表

1. 模拟散列表

【考研思维题】【哈希表 || 什么时候用哈希表呢?快速查询的时候】【我们一起60天准备考研算法面试(大全)-第九天 9/60】_第1张图片

开散列方法(拉链法)

就记住有N个链表头节点

对于原数据可以 (x % N + N) % N;找到合适位置插入到头节点

#include 
#include 

using namespace std;

const int N = 1e5 + 3;  // 取大于1e5的第一个质数,取质数冲突的概率最小 可以百度

//* 开一个槽 h
int h[N], e[N], ne[N], idx;  //邻接表

void insert(int x) {
    // c++中如果是负数 那他取模也是负的 所以 加N 再 %N 就一定是一个正数
    int k = (x % N + N) % N;
    e[idx] = x;
    ne[idx] = h[k];
    h[k] = idx++;
}

bool find(int x) {
    //用上面同样的 Hash函数 讲x映射到 从 0-1e5 之间的数
    int k = (x % N + N) % N;
    for (int i = h[k]; i != -1; i = ne[i]) {
        if (e[i] == x) {
            return true;
        }
    }
    return false;
}

int n;

int main() {
    cin >> n;

    memset(h, -1, sizeof h);  //将槽先清空 空指针一般用 -1 来表示

    while (n--) {
        string op;
        int x;
        cin >> op >> x;
        if (op == "I") {
            insert(x);
        } else {
            if (find(x)) {
                puts("Yes");
            } else {
                puts("No");
            }
        }
    }
    return 0;
}

开放寻址法代码

本质:(最多存1e5个数)
#include 
#include 

using namespace std;

//开放寻址法一般开 数据范围的 2~3倍, 这样大概率就没有冲突了
const int N = 2e5 + 3;        //大于数据范围的第一个质数
const int null = 0x3f3f3f3f;  //规定空指针为 null 0x3f3f3f3f

int h[N];

int find(int x) {
    int t = (x % N + N) % N;
    while (h[t] != null && h[t] != x) {
        t++;
        if (t == N) {
            t = 0;
        }
    }
    return t;  //如果这个位置是空的, 则返回的是他应该存储的位置
}

int n;

int main() {
    cin >> n;

    memset(h, 0x3f, sizeof h);  //规定空指针为 0x3f3f3f3f

    while (n--) {
        string op;
        int x;
        cin >> op >> x;
        if (op == "I") {
            h[find(x)] = x;
        } else {
            if (h[find(x)] == null) {
                puts("No");
            } else {
                puts("Yes");
            }
        }
    }
    return 0;
}

2. 未出现过的最小正整数( 2018年全国硕士研究生招生考试 )

【考研思维题】【哈希表 || 什么时候用哈希表呢?快速查询的时候】【我们一起60天准备考研算法面试(大全)-第九天 9/60】_第2张图片
由于我们需要从1去找 是否出现在数组中

如果1去遍历一遍数组
2遍历一遍数组
太麻烦

如何一步到位?
其实可以用
哈希思想

把数组出现的数都映射存储到数组中

如何都没有出现

那么一定是大于数组的个数+1的那个值

class Solution {
public:
    int findMissMin(vector<int>& nums) {
        int n = nums.size();
        vector<bool> hash(n + 1);
        for (int x: nums)
            if (x >= 1 && x <= n)
                hash[x] = true;
        for (int i = 1; i <= n; i ++ )
            if (!hash[i])
                return i;
        return n + 1;
    }
};

你可能感兴趣的:(考研,散列表,算法)