- 使用LlamaIndex查询 MongoDB 数据库,并获取 OSS (对象存储服务) 上的 PDF 文件,最终用Langchain搭建应用
朴拙Python交易猿
数据库mongodbpdf
使用LlamaIndex查询MongoDB数据库,并获取OSS(对象存储服务)上的PDF文件,然后利用Langchain搭建应用,涉及多个步骤。下面我们将详细介绍如何将这些步骤结合起来,构建一个系统:1.环境准备首先,确保你已经安装了以下Python库:pipinstallllama_indexpymongolangchainopenaiboto3pdfplumberpymongo:MongoDB
- 使用DocusaurusLoader加载Docusaurus文档
scaFHIO
easyui前端javascriptpython
技术背景介绍Docusaurus是一个静态网站生成器,专注于提供开箱即用的文档功能,特别适合技术文档和博客的创建和管理。通过其强大的插件和主题系统,可以方便地构建具有优秀用户体验的网站。然而,当需要将这些文档集成到AI应用中时,如何高效地加载和处理它们就成为一个挑战。为了解决这个问题,LangChain提供了DocusaurusLoader,它能够轻松地加载和处理Docusaurus文档,使其可以
- 使用Yuan 2.0与LangChain构建智能聊天应用:完整指南
scaFHIO
langchainpython
技术背景介绍Yuan2.0是IEIT系统开发的新一代基础大语言模型,包括Yuan2.0-102B、Yuan2.0-51B和Yuan2.0-2B三种版本。相比之前的Yuan1.0,Yuan2.0使用了更广泛的高质量预训练数据,并通过指令微调数据集增强了模型的语义理解、数学推理、编程知识等能力。为了方便开发者集成,Yuan2.0提供了兼容OpenAIAPI的服务接口。本文将介绍如何通过LangChai
- 使用LangChain与Clarifai模型进行交互
vaidfl
langchain交互python
在现代AI应用开发中,Clarifai提供了一个完整的AI生命周期管理平台,包括数据探索、数据标注、模型训练、评估和推理。本文将探讨如何使用LangChain库与Clarifai的模型进行交互。技术背景介绍Clarifai是一个全面的AI平台,专注于模型的构建和部署。要开始使用Clarifai,你需要一个账户和个人访问令牌(PAT)。确保先在Clarifai获取或创建你的PAT。核心原理解析通过L
- 使用LangChain与AI21Jurassic模型进行交互
fgayif
langchain交互python
在本指南中,我们将探讨如何使用LangChain与AI21的Jurassic模型进行交互。为了使用Jamba模型,请使用ChatAI21对象。您可以在LangChain上查看AI21模型和工具的完整列表。环境准备首先,我们需要安装langchain-ai21库。!pipinstall-qUlangchain-ai21环境设置在开始之前,我们需要获取AI21的API密钥,并设置AI21_API_KE
- 什么是Embedding、RAG、Function calling、Prompt engineering、Langchain、向量数据库? 怎么使用
ZhangJiQun&MXP
教学2021论文2024大模型以及算力embeddingpromptlangchain语言模型自然语言处理人工智能神经网络
什么是Embedding、RAG、Functioncalling、Promptengineering、Langchain、向量数据库?怎么使用目录什么是Embedding、RAG、Functioncalling、Promptengineering、Langchain、向量数据库?怎么使用Embedding(嵌入)RAG(检索增强生成)Functioncalling(函数调用)Promptengin
- 自定义Agent组件
三月七꧁ ꧂
langchain+llmpython开发语言microsoftgptlangchainjavascript前端
文章目录ReActAgent的实践工具组件和工具包组件工具组件的类型 一个Agent组件由两部分组成:tools(代理可以使用的工具)和AgentExecutor(决定采取哪种行动)。下面逐一介绍如何创建自定义Agent组件。Tool、AgentExecutor和BaseSingleActionAgent是从LangChain.agents模块中导人的类,用于创建自定义Agent组件和too
- Agent组件入门示例
三月七꧁ ꧂
langchain+llm前端语言模型javascriptmicrosoft人工智能gptllama
文章目录Agent组件的类型Agent组件的应用Agent组件的多功能性 安装openai和LangChain库。pip-qinstallopenaipipinstallLangChain 设置谷歌搜索的API密钥,以及设置OpenAI的密钥。os.environ["OPENAIAPIKEY"]="填人你的密钥"os.environ["SERPAPIAPIKEY"]="填人你的谷歌搜索
- 深入解析LangChain4j中的ChatLanguageModel API:从基础到高级应用
泰山AI
精品专栏microsoftlangchain4jjavaai
聊天与语言模型|LangChain4j注意本页描述的是低级别的LLMAPI。有关高级LLMAPI,请参见AIServices。支持的所有LLMProviderStreamingTools(sync/streaming)JSONSchemaJSONModeSupportedModalities(Input)ObservabilityLocalDeploymentSupportsNativeImage
- LangChain大模型应用开发:工作流编排
梦丶晓羽
langchainpython自然语言处理人工智能
介绍大家好,博主又来给大家分享知识了,那么今天又给大家分享什么内容呢?今天我要给大家分享的内容是LangChain工作流编排。那么什么是LangChain工作流编排呢?简单来说,LangChain工作流编排就是将多个与自然语言处理相关的组件,像提示模板、大语言模型、各种实用工具等巧妙地组合在一起,形成一个有条理、可执行的流程。LangChain提供了多种方式来实现这种编排,其中很有特色的就是链式调
- 【带你 langchain 双排系列教程】1. langchian 基本架构与环境配置(siliconFlow Deepseek接入)
夜里慢慢行456
langchain
LangChain是一个用于构建和部署大模型应用的框架,涵盖了从语言模型(LLM)到检索增强生成(RAG)、OpenAI集成以及智能体(Agent)的全套工具链。以下是一个简要的LangChain大模型全套教程,帮助你快速上手。核心内容:LangChain六大模块详解:模型(Models)、提示词(Prompts)、链(Chains)、索引(Indexes)、智能体(Agents)、内存(Memo
- 使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南
m0_57781768
pythonlangchaineasyui
使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南在现代人工智能应用中,大语言模型(LLM)扮演着越来越重要的角色,尤其是在对话系统、智能助理和其他自然语言处理任务中。然而,所有的模型都有一个有限的上下文窗口,意味着它们可以处理的输入令牌(tokens)数量是有限的。当我们需要处理较长的对话历史或复杂的任务链时,如何管理传递给模型的消息长度变得至关重要。在这篇文章
- 使用LangChainV3.0加载PDF文件并进行总结
毛毛的毛毛
pdfAI编程
LangChain目前已经更新到了V3版本,之前一直使用的V1版本,有很多方法都需要自己去封装,这次重新看了V3版本的API文档,很多方法都十分便利,调用方法简单明了十分方便,下面就来展示下这次对于PDF文件加载的优化处理:importtimefromlangchain.chains.summarizeimportload_summarize_chainfromlangchain_communit
- 深入解析LangChain:构建智能应用的全方位指南
AIGC大模型 吱屋猪
langchain语言模型人工智能自然语言处理llama百度机器学习
1.LangChain介绍与环境配置面试官:“你能先简单介绍一下LangChain吗?包括它的背景、主要功能,以及它在当前语言模型开发中的意义。”你:"LangChain是一个开源框架,旨在简化和增强基于语言模型的应用开发。随着语言模型,特别是大型预训练模型的兴起,开发者逐渐认识到这些模型不仅可以生成文本,还可以被用于处理复杂的对话、数据分析以及其他需要自然语言处理的任务。然而,这些模型的集成和实
- LangChain开发【NL2SQL】应用(few-shot优化)
向羿燃
LangChain开发及生态langchainai人工智能数据分析
前言之前发布的博客LangGraph开发Agent智能体应用【NL2SQL】-CSDN博客,留了一个问题,对于相对复杂的sql(leetcode中等难度的sql题),gpt4o就力不从心了。这篇文章来讲一下优化什么是few-shot使用这些少量的、调整后的样本对预训练模型进行微调其实就是给LLM少量示例关于few-shot的研究:https://medium.com/ubiai-nlp/step-
- 1.5 企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能promptchatgptlangchaingpt
企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径一、技术演进金字塔:四阶技术如何构建AI新范式▲预训练│(万亿参数基建)├─大模型微调│(领域知识注入)├─AI智能体│(任务自动化)└─提示工程(零样本交互)1.1技术层级关系与适用场景技术阶段技术门槛算力需求企业应用成熟度典型工具链提示工程★☆☆☆☆CPU即可90%+企业已部署LangChain、AutoGPT
- langchain学习笔记之小样本提示词Few-shot Prompt Template
静静的喝酒
langchain深度学习人工智能大模型开发langchain
langchain学习笔记之小样本提示词引言Few-shotPromptTemplates\text{Few-shotPromptTemplates}Few-shotPromptTemplates简单介绍示例集创建创建ExamplePrompt\text{ExamplePrompt}ExamplePrompt与ExampleSelector\text{ExampleSelector}Example
- 基于 llama-index与Qwen大模型实现RAG
uncle_ll
RAGllamaragqwenllm大模型
文章目录llama-index核心功能工作流程Qwen技术特点核心能力RAG核心原理关键优势工作流程知识准备阶段查询处理阶段检索与重排阶段语言模型调用阶段实现环境准备代码实现参考LlamaIndex和Langchain都是比较成熟的RAG和Agent框架,这里基于llama实现RAG框架,大模型选用阿里的开源模型Qwen大模型。可以实现Qwen2.5与外部数据(例如文档、网页等)的连接,利用Lla
- 使用OpenAI API进行文本分类标注
dgay_hua
人工智能python
技术背景介绍文本分类标注(Tagging)是一种非常有用的技术,可以对文档进行分类,例如情感分析、语言检测、风格判断、主题识别等。这项技术在自然语言处理(NLP)领域中有广泛的应用,例如社交媒体监控、客户反馈分析和自动化客服系统等。在本文中,我们将使用OpenAI的API,通过LangChain工具来进行文本分类标注。我们将展示如何定义分类函数和模式(schema),并通过实际代码演示实现文本分类
- 探索Hugging Face平台:AI工具和集成指南
stjklkjhgffxw
人工智能python
探索HuggingFace平台:AI工具和集成指南在人工智能和自然语言处理领域,HuggingFace无疑是一个备受瞩目的平台。无论是开发者还是研究者,大家都能从中找到适合的资源和工具。本篇文章旨在为大家深入介绍如何在HuggingFace平台上使用不同的功能模块,包括模型、API和工具集成。主要内容1.安装和集成要使用HuggingFace与Langchain的集成功能,我们首先需要安装lang
- 使用LangChain与OpenAI API进行向量嵌入和搜索的实战教程
bBADAS
langchainpython开发语言
使用LangChain与OpenAIAPI进行向量嵌入和搜索的实战教程相信很多开发者都对AI技术充满了兴趣,尤其是在如何实际应用这些技术上。今天,我们将详细探讨如何使用LangChain和OpenAIAPI进行向量嵌入和搜索,以构建一个可以对大量文本数据进行智能搜索的应用。技术背景介绍LangChain是一个用于构建大型语言模型(LLM)应用的强大工具集,能够帮助开发者快速构建智能应用。结合Ope
- 深度学习-108-大语言模型LLM之基于langchain的结构化输出功能提取结构化信息
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1langchain的结构化输出1.1推荐的使用流程1.2模式定义1.3返回结构化输出1.3.1工具调用(方式一)1.3.2JSON模式(方式二)1.3.3结构化输出法(方式三)2提取结构化信息2.1定义数据模型2.2配置提示模板2.3设置执行链3参考附录1langchain的结构化输出对于许多应用程序,例如聊天机器人,模型需要直接用自然语言响应用户。然而,在某些情况下,我们需要模型以结构
- 真正通俗易懂的Langchain入门学习(六)
caridle
智能体langchain学习
五、下一步行动:从学习者到创造者的跃迁1.启动你的第一个项目(3天实践计划)行动指南:graphTDA[第1天:选择方向]-->B{{三选一}}B-->C[客服助手]B-->D[论文分析]B-->E[数据助手]C/D/E-->F[第2天:搭建基础]F-->G[第3天:添加特色功能]具体任务:基础版必做:运行课堂示例代码替换为自己的数据(如上传公司产品手册/个人学习笔记)特色功能选装:给客服助手添加
- 真正通俗易懂的Langchain入门学习(四)
caridle
智能体langchain学习
三、核心模块深入:像搭积木一样组装AI能力1.Models(模型层):给你的AI换个“大脑”场景需求:需要更高精度的回答?→换GPT-4数据敏感必须本地部署?→用开源模型想节省成本?→选择按量付费的模型实操演示:#使用OpenAI的GPT-4(需账户有访问权限)fromlangchain.chat_modelsimportChatOpenAIgpt4=ChatOpenAI(model="gpt-4
- 真正通俗易懂的Langchain入门学习(五)
caridle
智能体langchain学习
四、项目实战:从玩具到工具的蜕变项目1:智能客服助手(1-2天)场景需求:用户咨询产品信息→自动查询数据库处理退换货请求→生成工单并邮件通知多轮对话→记住用户历史订单技术栈:产品咨询售后服务用户提问意图识别Chain类型判断数据库查询Agent工单生成Chain组织回复回复美化Transform分步实现:搭建基础问答链fromlangchain.chainsimportRetrievalQA#连接
- 真正通俗易懂的Langchain入门学习(一)
caridle
智能体langchain学习数据库
以下是针对初学者的LangChain基础学习提纲,从理论到实践逐步深入,帮助你系统掌握核心概念与应用:一、基础认知(1-2天)什么是LangChain?定义:基于语言模型(LLM)构建应用程序的框架。核心功能:连接LLM与外部数据/工具、管理对话流程、自动化复杂任务。典型应用场景:聊天机器人、文档问答、数据分析助手、自动化工作流。与普通LLM应用的区别:支持多步骤任务、记忆管理、外部工具集成。核心
- AI Agent智能应用从0到1定制开发Langchain+LLM全流程解决方案与落地实战
AI知识分享官
人工智能langchain算法数据挖掘计算机视觉机器学习产品经理
大模型微调实战:精通、指令微调、开源大模型微调、对齐与垂直领域应用29套AI全栈大模型项目实战,人工智能视频课程-多模态大模型,微调技术训练营,大模型多场景实战,AI图像处理,AI量化投资,OPenCV视觉处理,机器学习,Pytorch深度学习,推荐系统,自动驾驶,训练私有大模型,LLM大语言模型,大模型多场景实战,Agent智能应用,AIGC实战落地,ChatGPT虚拟数字人,Djourney智
- Langchain.js与ScriptEcho:推动AI文本生成与前端开发的创新
2401_89747417
langchainjavascript人工智能前端
引言在当今快速发展的科技领域,AI文本生成和前端开发的结合正成为一个重要的趋势。Langchain.js作为一个强大的工具,正在为开发者提供前所未有的便利。Langchain.js不仅连接了多个大型语言模型,还通过其灵活的架构,帮助开发者简化了AI应用的开发流程。同时,ScriptEcho作为一款创新的前端开发工具,正通过自动化功能提升开发效率。本文将深入探讨Langchain.js的核心概念及其
- 本地运行LangChain项目的完整指南
qq_37836323
langchainpython
老铁们,今天我们来聊一聊如何在本地运行LangChain项目并提交你的第一段代码。对于开发容器来说,你可以查看.devcontainer文件夹。咱们的项目是通过Poetryv1.7.1+来管理依赖的。如果你用Conda,记得先创建并激活一个新的Conda环境,例如condacreate-nlangchainpython=3.9。Poetry的安装在安装Poetry之前,老铁们注意,如果你使用Con
- 精通LangChain:如何使用Unstructured处理多种格式的图像文档
hshahtjtbh
langchainpython
#引言随着人工智能和深度学习的快速发展,文档图像分析(DocumentImageAnalysis,DIA)在许多领域中变得至关重要。然而,处理多种图像格式的文档仍然是一个挑战。本文将介绍如何使用Unstructured库,通过LangChain框架加载和处理多种格式的图像文档,帮助您在DIA任务中实现更高效的工作流程。#主要内容##安装Unstructured在开始之前,确保安装了Unstruct
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round