【机器学习】特征降维 - 主成分分析PCA

「作者主页」:士别三日wyx
「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者
「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》

相关系数

  • 一、主成分分析
  • 二、指定维度
  • 三、保留比例
  • 四、获取协方差
  • 五、返回原始数据

提取的特征当中,有一些相关(相似)的「冗余特征」,这种特征是没有必要统计的,我们需要「减少」相关的特征,留下不相关的特征。也就是「特征降维」

特征降维的方式有很多,这里使用其中的一种:主成分分析

一、主成分分析

主成分分析(Principal Component Analysis,PCA), 是一种「统计」方法。通过正交变换将一组可能存在「相关性」的变量转换为一组「线性不相关」的变量,转换后的这组变量叫「主成分」

统计变量时,变量个数太多并且有很强的相关性,也就是有很多「相似」的变量,这些变量会增加分析的工作量和「复杂性」

而主成分分析可以根据变量之间的相关性,建立新的变量来替代哪些重复且不重要的变量;也就是用较少的变量来代替原来较多的变量,并可以反映原来多个变量的大部分信息,从而提升处理数据的「速度」

比如评选三好学生,每个学生有身高、体重、家境、成绩等多个特征,但身高、体重这些特征对于评选来说是无用的,那我们就去掉这种无用特征,用成绩来代替他们。

sklearn.decomposition.PCA( n_components=None )

  • PCA.fit_transform( data ) :接收数据并进行降维
  • PCA.inverse_transform( data ):将降维后的数据转回原始数据
  • PCA.get_covariance():获取协方差数据
  • PCA.get_params():获取模型数据
  • n_components:指定维度(小数:最终保留百分之多少的信息,整数:减少到多少特征)

二、指定维度

n_components 参数为「整数」,意思是降低到「指定维度」

from sklearn import decomposition

# 测试数据
data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]

# 初始化
pca = decomposition.PCA(n_components=2)

# 降维
result = pca.fit_transform(data)
print(result)

输出:

[[ 1.28620952e-15  3.82970843e+00]
 [ 5.74456265e+00 -1.91485422e+00]
 [-5.74456265e+00 -1.91485422e+00]]

从结果可以看到,特征从原本的3维降低到现在的2维。

PS:本来有3列,称为3维度;降维后变成2列,称为2维。


三、保留比例

n_components参数为「小数」,意思是降维后保留百分之多少的信息。

from sklearn import decomposition

# 测试数据
data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]

# 初始化
pca = decomposition.PCA(n_components=0.30)

# 降维
result = pca.fit_transform(data)
print(result)

输出:

[[ 1.28620952e-15]
 [ 5.74456265e+00]
 [-5.74456265e+00]]

从结果可以看到,特征有原来的4维降低到1维,只保留了30%的信息。


四、获取协方差

from sklearn import decomposition

# 测试数据
data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]

# 初始化
pca = decomposition.PCA(n_components=2)

# 降维
result = pca.fit_transform(data)
print(pca.get_covariance())

输出:

[[  4.33333333  -5.5         -1.66666667   1.16666667]
 [ -5.5          7.           1.5         -1.        ]
 [ -1.66666667   1.5         20.33333333 -15.83333333]
 [  1.16666667  -1.         -15.83333333  12.33333333]]

五、返回原始数据

将降维后的数据转换成原始数据

from sklearn import decomposition

# 测试数据
data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]

# 初始化
pca = decomposition.PCA(n_components=2)

# 降维
result = pca.fit_transform(data)
print(pca.inverse_transform(result))

输出:


[[2. 8. 4. 5.]
 [6. 3. 0. 8.]
 [5. 4. 9. 1.]]

你可能感兴趣的:(机器学习,人工智能,分类)