脚本调度Kylin之创建篇

一、背景

  • 大数据环境下的离线数据存储,考虑到持久性以及扩展性上,架构上使用的是Hive作为数据结构存储。
  • 同时,也面临着Hive查询速度不够快的问题,在报表查询面临着需要快速查询到数据结果下。直接从Hive中查询已经无法满足要求,必须要有一个更加快速的查询工具来进行预处理。
  • 那么,就是Kylin了,Kylin基于Hive、HBase等架构之上,可以基于Hive进行数据的多维度的数据预处理,并把结果存储到HBase中。当用户需要对数据进行查询的时候,可通过查询Kylin获取到查询结果。
  • Kylin有一个统一的Web配置平台。但是一旦我们创建了任务,如果每天调度执行一次,就需要定时调度Kylin去处理。

二、思路

  • 虽然可以直接通过各种方式模拟Http请求,但是考虑到工作量等因素尽量选择简单的语言开发(Python/Shell)
  • 考虑到是Hive调度之后,直接执行Kylin调度任务,最快想到的就是用Shell脚本来直接调度Kylin。
  • 基本思路如下,用curl模拟请求。
    • 界面创建一个模板任务,获取请求地址与请求体
    • curl模拟登陆cookie
    • curl模拟加载数据源
    • curl模拟创建Model
    • curl模拟创建Cubes
    • curl模拟构建任务

三、Coding

3.1 定义Kylin全局变量

kylin_url=http://123456:7070/kylin

3.2 登陆授权获取Cookie

curl -c cookfile.txt -X POST \
-H "Authorization:Basic QURNSU46S1lMSU4=" \
-H "Content-Type: application/json" \
${kylin_url}/api/user/authentication
  • QURNSU46S1lMSU4=为加密算法(username:password的Base64密码加密)

3.3 创建数据源

获取到查询接口为${kylin_url}/api/tables/${hiveTableName}/${projectName}

curl -b cookfile.txt \
-X POST \
-H "Content-Type:application/json" \
-d '{"calculate":false}'  \
${kylin_url}/api/tables/${hiveTableName}/${projectName}

calculate为true或者false统计预计算

3.4 创建Model

获取到查询接口为${kylin_url}/api/models

可自行在页面上创建,复制一个请求体,以此作为模板后,后续的创建都以模板为准


curl -b cookfile.txt \
-X POST \
-H "Content-Type:application/json" \
-d '{"modelDescData":".........","project":"testProject"}' \
${kylin_url}/api/models

body体

{
    "modelDescData": "........",
    "project": "tbl_biz_log_plus"
}

modelDescData内部为json转义内容

{
    "name": "${model名好处呢给}",
    "description": "",
    "fact_table": "${事实表名称}",
    "lookups": [],
    "filter_condition": "",
    "dimensions": [{
        "table": "${事实表名称}'",
        "columns": ["${维度列1}", "${维度列2}", "${维度列3}", "${维度列4}"]
    }],
    "metrics": ["${量度列1}"],
    "partition_desc": {
        "partition_date_column": "${时间分区列}",
        "partition_type": "APPEND",
        "partition_date_format": "${时间分区列,yyyyMMdd,yyyy-MM-dd}"
    },
    "last_modified": 0
}

3.5 创建Cubes

获取到查询接口为${kylin_url}/api/cubes

可自行在页面上创建,复制一个请求体,以此作为模板后,后续的创建都以模板为准


curl -b cookfile.txt \
-X POST \
-H "Content-Type:application/json" \
-d '{"cubeDescData":"...","project":"tbl_biz_log_plus"}' \
${kylin_url}/api/cubes
  1. body体
{
"modelDescData": "........",
"project": "tbl_biz_log_plus"
}

modelDescData内部为json转义内容

{
"name": "${Cube名称}",
"model_name": "${Mode名称}",
"description": "",
"dimensions": [{
"name": "${维度1}",
"table": "${表名}",
"column": "${维度1}"
}, {
"name": "${维度2}",
"table": "${表名}",
"column": "${维度2}"
}, {
"name": "${维度2}",
"table": "${表名}",
"column": "${维度2}"
}, {
"name": "${维度3}",
"table": "${表名}",
"column": "${维度3}"
}],
//统计量度
"measures": [{
"name": "_COUNT_",
"function": {
"expression": "COUNT",
"returntype": "bigint",
"parameter": {
"type": "constant",
"value": "1"
},
"configuration": {}
}
}, {
"name": "count_uid",
"function": {
"expression": "COUNT_DISTINCT",
"returntype": "hllc(16)",
"parameter": {
"type": "column",
"value": "${表名}.${量度1}"
}
},
"showDim": false
}],
"dictionaries": [],
// rowkey设计原则
"rowkey": {
"rowkey_columns": [{
"column": "${表名}.${维度1}",
"encoding": "dict",
"isShardBy": "false",
"encoding_version": 1
}, {
"column": "${表名}.${维度2}",
"encoding": "dict",
"isShardBy": "false",
"encoding_version": 1
}, {
"column": "${表名}.${维度3}",
"encoding": "dict",
"isShardBy": "false",
"encoding_version": 1
}, {
"column": "${表名}.${维度4}",
"encoding": "dict",
"isShardBy": "false",
"encoding_version": 1
}]
},
// 维度购机优化
"aggregation_groups": [{
"includes": ["${表名}.${维度4}"],
"select_rule": {
"hierarchy_dims": [
["TBL_BIZ_LOG_PLUS_'${startDate}'.APP_ID", "TBL_BIZ_LOG_PLUS_'${startDate}'.CHANNEL_ID"]
],
"mandatory_dims": ["TBL_BIZ_LOG_PLUS_'${startDate}'.DT"],
"joint_dims": []
}
}],
"mandatory_dimension_set_list": [],
"partition_date_start": 0,
"notify_list": [],
"hbase_mapping": {
"column_family": [{
"name": "F1",
"columns": [{
"qualifier": "M",
"measure_refs": ["_COUNT_"]
}]
}, {
"name": "F2",
"columns": [{
"qualifier": "M",
"measure_refs": ["count_uid"]
}]
}]
},
"volatile_range": "0",
"retention_range": "0",
"status_need_notify": ["ERROR", "DISCARDED", "SUCCEED"],
"auto_merge_time_ranges": [],
"engine_type": "2",
"storage_type": "2",
"override_kylin_properties": {}
}

3.6 构建任务

构建执行任务,开始时间与结束时间构建计算

today=$(date +%Y%m%d)
endTime=`date -d "${today} 00:00:00" +%s`
endTime=$[(endTime+8*60*60)*1000]
startTime=$[endTime-24*60*60*1000]

curl -b cookfile.txt \
-X PUT \
-H "Content-Type:application/json" \
-d '{"buildType":"BUILD","startTime":'${startTime}',"endTime":'${endTime}'}' \
${kylin_url}/api/cubes/${CubeName}/rebuild

四、总结

  • 总体流程即为
    • 抓包
    • 登陆Cookie
    • 模拟请求
  • 在定时执行完Hive任务之后,就可以直接可以调度Kylin执行任务了。

本篇文章由一文多发平台ArtiPub自动发布

你可能感兴趣的:(脚本调度Kylin之创建篇)