目录
1、稀疏光流法跟中移动物体
2、监督学习聚类
3、K均值聚类
4、加载深度神经网络模型
5、深度神经网络模型的使用
//稀疏光流法跟中移动物体
vector color_lut;//颜色查找表
void draw_lines(Mat &image, vector pt1, vector pt2)
{
RNG rng(5000);
if (color_lut.size() < pt1.size())
{
for (size_t t = 0; t < pt1.size(); t++)
{
color_lut.push_back(Scalar(rng.uniform(0, 255), rng.uniform(0, 255),
rng.uniform(0, 255)));
}
}
for (size_t t = 0; t < pt1.size(); t++)
{
line(image, pt1[t], pt2[t], color_lut[t], 2, 8, 0);
}
}
int test6()
{
VideoCapture capture("F:/testMap/lolTFT.mp4");
Mat prevframe, prevImg;
if (!capture.read(prevframe))
{
cout << "请确认输入视频文件是否正确" << endl;
return -1;
}
cvtColor(prevframe, prevImg, COLOR_BGR2GRAY);
//角点检测相关参数设置
vector Points;
double qualityLevel = 0.01;
int minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false; double k = 0.04;
int Corners = 5000;//角点检测
goodFeaturesToTrack(prevImg, Points, Corners, qualityLevel, minDistance,
Mat(), blockSize, useHarrisDetector, k);
//稀疏光流检测相关参数设置
vector prevPts;//前一帧图像角点坐标
vector nextPts;//当前帧图像角点坐标
vector status;//检点检测到的状态
vector err;
TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, 0.01);
double derivlambda = 0.5;
int flags = 0;
//初始状态的角点
vector initPoints;
initPoints.insert(initPoints.end(), Points.begin(), Points.end());
//前一帧图像中的角点坐标
prevPts.insert(prevPts.end(), Points.begin(), Points.end());
while (true)
{
Mat nextframe, nextImg;
if (!capture.read(nextframe))
{
break;
}
imshow("nextframe", nextframe);
//光流跟踪
cvtColor(nextframe, nextImg, COLOR_BGR2GRAY);
calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, status, err,
Size(31, 31), 3, criteria, derivlambda, flags);
//判断角点是否移动,如果不移动就删除
size_t i, k;
for (i = k = 0; i < nextPts.size(); i++)
{
//距离与状态测量
double dist = abs(prevPts[i].x - nextPts[i].x) + abs(prevPts[i].y - nextPts[i].y);
if (status[i] && dist > 2)
{
prevPts[k] = prevPts[i];
initPoints[k] = initPoints[i]; nextPts[k++] = nextPts[i];
circle(nextframe, nextPts[i], 3, Scalar(0, 255, 0), -1, 8);
}
}
//更新移动角点数目
nextPts.resize(k);
prevPts.resize(k);
initPoints.resize(k);
//绘制跟踪轨迹
draw_lines(nextframe, initPoints, nextPts);
imshow("result", nextframe);
char c = waitKey(50);
if (c == 27)
{
break;
}
//更新角点坐标和前一帧图像
std::swap(nextPts, prevPts);
nextImg.copyTo(prevImg);
//如果角点数目少于30,就重新检测角点
if (initPoints.size() < 30)
{
goodFeaturesToTrack(prevImg, Points, Corners, qualityLevel,
minDistance, Mat(), blockSize, useHarrisDetector, k);
initPoints.insert(initPoints.end(), Points.begin(), Points.end());
prevPts.insert(prevPts.end(), Points.begin(), Points.end());
printf("total feature points : %d\n", prevPts.size());
}
}
waitKey(0);
return 0;
}
//监督学习聚类
int test7()
{
Mat img = imread("F:/testMap/digits.png"); Mat gray;
cvtColor(img, gray, COLOR_BGR2GRAY);
//分割为160个cells
Mat images = Mat::zeros(5000, 400, CV_8UC1);
Mat labels = Mat::zeros(5000, 1, CV_8UC1);
int index = 0;
Rect numberImg;
numberImg.x = 0;
numberImg.height = 1;
numberImg.width = 400;
for (int row = 0; row < 50; row++)
{
//从图像中分割出20×20的图像作为独立数字图像
int label = row / 5;
int datay = row * 20;
for (int col = 0; col < 100; col++)
{
int datax = col * 20;
Mat number = Mat::zeros(Size(20, 20), CV_8UC1);
for (int x = 0; x < 20; x++)
{
for (int y = 0; y < 20; y++)
{
number.at(x, y) = gray.at(x + datay, y + datax);
}
}
//将二维图像数据转成行数据
Mat row = number.reshape(1, 1);
cout << "提取第"<< index + 1 <<"个数据" << endl;
numberImg.y = index;
//添加到总数据中
row.copyTo(images(numberImg));
//记录每个图像对应的数字标签
labels.at(index, 0) = label;
index++;
}
}
imwrite("所有数据按行排列结果.png", images);
imwrite("标签. png", labels);
//加载训练数据集
images.convertTo(images,CV_32FC1);
labels.convertTo(labels,CV_32SC1);
Ptr tdata = ml::TrainData::create(images,ml::ROW_SAMPLE, labels);
//创建K近邻类
Ptr knn = KNearest::create();
knn->setDefaultK(5);//每个类别拿出5个数据
knn->setIsClassifier(true);//进行分类
//训练数据
knn->train(tdata);
//保存训练结果
knn->save("knn_model.ym1");
//输出运行结果提示
cout << "己使用K近邻完成数据训练和保存" << endl;
waitKey(0);
return 0;
}