深度学习——自编码器AutoEncoder

基本概念

概述

自编码器(Autoencoder)是一种无监督学习的神经网络模型,用于学习数据的低维表示。它由编码器(Encoder)和解码器(Decoder)两部分组成,通过将输入数据压缩到低维编码空间,再从编码空间中重构输入数据。

基本结构

自编码器的基本结构如下:
1.编码器(Encoder):接收输入数据,将其映射到低维编码空间。编码器由一系列隐藏层组成,通常逐渐减小维度以进行特征提取和数据压缩。
2.解码器(Decoder):接收编码器的输出,将编码后的数据映射回原始输入空间。解码器的结构与编码器相反,逐渐增加维度并尝试重构原始数据。
3.重构损失(Reconstruction Loss):自编码器的目标是尽可能准确地重构输入数据。因此,使用重构损失函数来衡量原始数据与重构数据之间的差异,如均方误差(MSE)或交叉熵损失。

训练过程

1.将输入数据提供给编码器,获得低维编码。
2.将编码结果传递给解码器,尝试重构输入数据。
3.计算重构损失,并通过反向传播优化网络参数,使重构误差最小化。
重复上述步骤,直到自编码器能够准确地重构输入数据。

应用

1.数据降维:自编码器可以学习数据的低维表示,有助于数据的压缩和降维。
2.特征学习:通过训练自编码器,可以学习到数据的有意义的特征表示,用于后续的监督学习任务。
3.异常检测:自编码器可以学习数据的正常分布,从而用于检测异常或异常数据的重构错误。

详细代码与注释

import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import numpy as np


# torch.manual_seed(1)    # reproducible

# Hyper Parameters
EPOCH = 10
BATCH_SIZE = 64
LR = 0.005         # learning rate
DOWNLOAD_MNIST = True

N_TEST_IMG = 5
# Mnist digits dataset
train_data = torchvision.datasets.MNIST(
    root='./mnist/',
    train=True,                                     # this is training data
    transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                                    # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_MNIST,                        # download it if you don't have it
)

# plot one example
# 训练数据
print(train_data.train_data.size())     # (60000, 28, 28)
# 训练标签
print(train_data.train_labels.size())   # (60000)
plt.imshow(train_data.train_data[2].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[2])
plt.show()

# Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)


class AutoEncoder(nn.Module):
    def __init__(self):
        super(AutoEncoder, self).__init__()

        # 编码器
        self.encoder = nn.Sequential(
            nn.Linear(28*28, 128),
            nn.Tanh(),
            nn.Linear(128, 64),
            nn.Tanh(),
            nn.Linear(64, 12),
            nn.Tanh(),
            nn.Linear(12, 3),   # compress to 3 features which can be visualized in plt
        )
        # 解码器
        self.decoder = nn.Sequential(
            nn.Linear(3, 12),
            nn.Tanh(),
            nn.Linear(12, 64),
            nn.Tanh(),
            nn.Linear(64, 128),
            nn.Tanh(),
            nn.Linear(128, 28*28),
            nn.Sigmoid(),       # compress to a range (0, 1)
        )

    def forward(self, x):
        encoded = self.encoder(x)
        decoded = self.decoder(encoded)
        return encoded, decoded


autoencoder = AutoEncoder()

optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
loss_func = nn.MSELoss()

# initialize figure
f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
plt.ion()   # continuously plot

# original data (first row) for viewing
view_data = train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.
for i in range(N_TEST_IMG):
    a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())

# 训练
for epoch in range(EPOCH):
    for step, (x, b_label) in enumerate(train_loader):
        b_x = x.view(-1, 28*28)   # batch x, shape (batch, 28*28)
        b_y = x.view(-1, 28*28)   # batch y, shape (batch, 28*28)

        encoded, decoded = autoencoder(b_x)

        # 比对解码出来的数据和原始数据,计算loss
        loss = loss_func(decoded, b_y)      # mean square error
        optimizer.zero_grad()               # clear gradients for this training step
        loss.backward()                     # backpropagation, compute gradients
        optimizer.step()                    # apply gradients

        if step % 100 == 0:
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())

            # plotting decoded image (second row)
            _, decoded_data = autoencoder(view_data)
            for i in range(N_TEST_IMG):
                a[1][i].clear()
                a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
                a[1][i].set_xticks(())
                a[1][i].set_yticks(())
            plt.draw()
            plt.pause(0.05)

plt.ioff()
plt.show()

# visualize in 3D plot
view_data = train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
encoded_data, _ = autoencoder(view_data)
fig = plt.figure(2)
ax = Axes3D(fig)
X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
values = train_data.train_labels[:200].numpy()
for x, y, z, s in zip(X, Y, Z, values):
    c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())
plt.show()

运行结果

深度学习——自编码器AutoEncoder_第1张图片
深度学习——自编码器AutoEncoder_第2张图片
深度学习——自编码器AutoEncoder_第3张图片
深度学习——自编码器AutoEncoder_第4张图片

你可能感兴趣的:(深度学习,PyTorch,深度学习,人工智能)