- 自动驾驶技术的未来趋势与挑战分析
智能计算研究中心
其他
内容概要自动驾驶技术自诞生以来经历了多个发展阶段。最初的研究集中在感知和控制系统的基础构建,随后进入了数据处理和算法的优化阶段,如今,随着人工智能和机器学习技术的快速应用,自动驾驶行业正处于一个前所未有的迅猛发展期。当前,行业内涌现出多种解决方案,各大汽车制造商与科技公司纷纷加大投入,推动这一领域的技术进步。市场需求不断增加,为自动驾驶技术注入活力。城市交通拥堵、环境污染等问题促使人们寻求更加智能
- 基于联邦学习的政务大数据平台应用研究
宋罗世家技术屋
计算机软件及理论发展专栏政务大数据
摘要当前数字政府建设已进入深水区,政务大数据平台作为数据底座支撑各类政务信息化应用,其隐私数据的安全性和合规性一直被业界广泛关注。联邦学习是一类解决数据孤岛的重要方法,基于联邦学习的政务一体化大数据平台应用具有较高的研究价值。首先,介绍政务大数据平台及联邦学习应用现状;然后,分析政务大数据平台面临的隐私数据的采集、分类分级、共享三大管理挑战;接着,阐述基于联邦学习的推荐算法和隐私集合求交技术的解决
- DeepSeek预言未来5年升值最快的东西
ZhuBin365
其它人工智能机器人
Thinking好的,我现在需要思考未来5年哪些东西可能会升值最快。首先,我得考虑当前的经济趋势和技术发展的方向。通货膨胀可能继续,所以实物资产可能保值。然后是科技领域,比如人工智能、量子计算这些前沿技术相关的资产可能会有增长。接着,环保和可持续发展是热门话题,可再生能源相关的产业可能会增值。例如,太阳能、风能的公司股票或者相关技术专利。另外,电动汽车和电池技术也可能持续发展,锂、钴等稀有金属的需
- LLM大模型产品经理学习指南【2025全新版】:极致详细,一篇搞定!
大模型入门学习
产品经理语言模型人工智能DeepSeek大模型学习LLM
前言·随着人工智能技术的蓬勃发展,尤其是大模型(LargeModel)的强势兴起,越来越多的企业对这一领域愈发重视并加大投入。作为大模型产品经理,需具备一系列跨学科的知识与技能,方能有效地推动产品的开发、优化以及市场化进程。以下是一份详尽的大模型产品经理学习路线,旨在助力你构建所需的知识体系,实现从零基础到精通的蜕变。一、基础知识阶段(一)计算机科学基础数据结构与算法:深入理解基本的数据结构(如数
- 销售易、极兔、珍客CRM:产品功能特色与企业适用性分析
程序员机器学习人工智能
销售易CRM产品功能移动化与社交化:销售易CRM支持iOS、Android等主流操作系统,销售人员可以随时随地访问客户信息、更新销售进度、创建任务等。同时,它还具备社交化功能,能够整合企业内部的社交网络,促进员工之间的协作与沟通。AI与大数据驱动:销售易CRM融合了人工智能和大数据技术,通过智能数据分析,帮助企业洞察客户行为和需求,预测销售趋势。例如,AI可以对客户数据进行深度挖掘,识别出高价值客
- 前瞻技术:塑造未来生活的新趋势
火龙果wa
生活人工智能经验分享
人工智能在艺术创作中的应用越来越普遍。AI可以生成画作、音乐和文学作品。它通过分析大量数据,学习艺术风格,并能创造出独特的作品。AI创作的艺术作品有几个特点。首先,它可以快速完成创作,节省时间。第二,AI能够融合多种风格。这使得作品更加多样化,有了新的表现形式。此外,AI常常会产生一些意想不到的创意,这能激发人们的灵感。艺术家与AI的合作也在逐渐发展。很多艺术家开始尝试与AI共同创作。他们使用AI
- 4.Python教程--项目部署篇(全)
花开如雨
笔记
Python人工智能总目录人工智能总目录网页链接文章目录Python人工智能总目录13、Python运维Day0113.1运维1.运维概述2.运维工具3.Linux常用命令4.周期性计划任务5.awk的使用14、Python项目部署Day0114.1项目部署1.概念2.项目部署(nginx+uwsgi+django)3.部署在线商城项目13、Python运维Day0113.1运维1.运维概述1、运
- 政务数据标识技术研究进展及下一代政务数据标识体系
宋罗世家技术屋
计算机软件及理论发展专栏政务
摘要政务数据标识是建设全国一体化政务大数据体系的一项基础性工作。对数据标识技术的研究进展进行了总结,比较了不同数据标识技术编码规则的异同,并进一步总结了政务数据标识及应用进展。结合政务数据所具有的权责明确、安全性要求高、兼容性需求强等特点,提出了下一代政务数据标识体系Gcode。Gcode由外部码、内部码和安全码3个部分组成。其中,外部码兼容了统一社会信息用代码,内部码建立了“机构部门-系统-数据
- DeepSeek深度探索:从新手到高手的蜕变之旅
古龙飞扬
ai人工智能
引言在当今数字化与智能化的浪潮中,人工智能(AI)技术正以前所未有的速度改变着我们的生活和工作方式。DeepSeek,作为一款由杭州深度求索人工智能基础技术研究有限公司开发的人工智能模型,凭借其强大的功能和灵活的应用场景,成为了众多企业和专业人士的得力助手。本文将带你深入了解DeepSeek,从新手入门到高手进阶,掌握其核心功能与使用技巧,实现个人能力的蜕变。一、初识DeepSeek:人工智能的“
- 浅谈Java中Excel导入导出的技术详解
foolhuman
javaexcel
引言在Java开发中,Excel文件的导入导出是一个常见的需求。无论是数据批量处理、报表生成还是数据迁移,Excel都是一个不可或缺的工具。然而,Excel导入导出过程中涉及到的技术细节和潜在问题常常让开发者感到头疼。本文将从技术难点出发,结合代码示例,详细介绍如何在Java中高效地实现Excel的导入导出功能。技术难点分析在Excel导入导出过程中,以下几个技术难点需要特别关注:大数据量处理当处
- AI前端开发的国际化发展机遇:ScriptEcho助力全球化布局
2401_89747417
人工智能前端
在全球化的今天,互联网应用已不再局限于单一市场。高效便捷的前端开发方案成为企业拓展国际市场的关键。得益于人工智能技术的飞速发展,AI代码生成器正在深刻改变前端开发模式,为国际化应用开发带来前所未有的机遇。然而,国际化开发也面临着诸多挑战,例如不同地区用户习惯、技术标准、语言差异等等。本文将探讨AI前端开发在国际化市场中的机遇与挑战,并以ScriptEcho为例,分析AI工具如何助力企业实现高效的全
- 中国人工智能的起步/发展,与这位数学家密切相关
东锋1.3
人工智能人工智能
1979年在中国是一个重要的年份。这一年发生了诸多大事,也被视为中国在政治、经济、科技、文化等多个领域的一个重要转折点和中国近现代历史重要的时期断代点之一。相比1979年所开启的波澜壮阔的新时代,中国人工智能(ArtificialIntelligence,AI)研究在1979年的起步只能算历史大潮中的一朵不起眼的浪花,但在中国人工智能的历史里,这是开天辟地的大事件。人工智能最早的学派是符号主义学派
- 大数据SQL调优专题——引入
黄雪超
技术基础大数据
从巴别塔开始我们先从一个神话故事开始本专栏的内容:在人类的早期,世界上的所有人说着同一种语言,彼此之间沟通毫无障碍。这种统一的语言让人们心生野心,他们决定联合起来建造一座高耸入云的塔,这座塔就是巴别塔。人们希望通过这座塔能够直达天堂,以此展示他们的力量和智慧。然而,他们的行为引起了上帝的关注。上帝看到人类如此团结,担心他们一旦成功建造巴别塔,将会变得无比强大,甚至可能威胁到神的权威。于是,上帝决定
- 今日AI和商界事件(2025-02-07)
LS_learner
AI和商界事件人工智能
今日AI领域的相关事件包括但不限于以下几个方面:一、政策与监管美国众议员推动禁止政府设备使用中国AI应用DeepSeek:美国众议院两名来自两党的议员提议立法,禁止联邦政府设备使用中国人工智能应用DeepSeek,理由是中国政府可能利用该应用进行监视和散布虚假信息。这一事件反映了地缘政治紧张背景下,各国在关键技术领域对自主性和安全性的重视。二、行业动态与发展OpenAI推进“星际之门”项目:Ope
- 精通LangChain:如何使用Unstructured处理多种格式的图像文档
hshahtjtbh
langchainpython
#引言随着人工智能和深度学习的快速发展,文档图像分析(DocumentImageAnalysis,DIA)在许多领域中变得至关重要。然而,处理多种图像格式的文档仍然是一个挑战。本文将介绍如何使用Unstructured库,通过LangChain框架加载和处理多种格式的图像文档,帮助您在DIA任务中实现更高效的工作流程。#主要内容##安装Unstructured在开始之前,确保安装了Unstruct
- 《深入了解Unstructured包:在LangChain中使用Unstructured.IO提取干净文本》
cgsayuclv
langchainpython
引言在现代数据处理和人工智能应用中,解析和清洗文本数据是一个重要的环节。无论是PDF文件、Word文档还是CSV文件,能够高效地提取有用信息对下游任务至关重要。这篇文章将介绍如何使用Unstructured.IO的Unstructured包来从原始文档中提取干净文本,并在LangChain框架中使用它。本文将包含安装与设置指南、详细教程、代码示例、常见问题及解决方案,并提供进一步学习的资源。主要内
- DeepSeek-V2模型版本更新:探索高效经济的多专家混合架构
姜葵烽
DeepSeek-V2模型版本更新:探索高效经济的多专家混合架构DeepSeek-V2项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/DeepSeek-V2在人工智能模型的发展进程中,每一次版本更新都是对前一次成果的深化与完善。今天,我们将详细介绍DeepSeek-V2模型的新版本特性,以及它如何通过创新的架构设计,实现了在性能和成本之间的最佳平衡。新
- 【人工智能】Python中的深度学习优化器:从SGD到Adam
蒙娜丽宁
Python杂谈人工智能人工智能python深度学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在深度学习模型的训练过程中,优化器起着至关重要的作用,它决定了模型的收敛速度以及最终的性能。本文将介绍深度学习中常用的优化器,从传统的随机梯度下降(SGD)到现代的自适应优化器(如Adam)。我们将深入探讨每种优化器的原理、优缺点,并通过Python实现
- 【人工智能】基于Python和OpenCV实现实时人脸识别系统:从基础到应用
蒙娜丽宁
Python杂谈人工智能python开发语言
随着人工智能和计算机视觉的快速发展,人脸识别技术已广泛应用于监控、安全、社交媒体、金融和医疗等领域。本文将介绍如何利用Python和OpenCV库,结合dlib进行实时人脸识别的实现。通过构建一个基础的实时人脸识别系统,读者将深入了解人脸检测与识别的核心原理,掌握如何使用现有的计算机视觉工具快速开发一个有效的实时系统。本文将详细介绍如何通过OpenCV和dlib来实现人脸检测与识别,如何实时获取摄
- Hive数据库及表操作
亦576
hive数据库hadoop
数仓原理以及Hive入门:数仓原理:数仓(DataWarehouse)是用于支持企业决策的数据存储和分析系统。数仓原理包括以下几个方面:1.数据抽取(Extraction):从各个业务系统中抽取数据,并进行清洗和转换,以适应数仓的数据模型。2.数据存储(Storage):将清洗和转换后的数据存储到数仓中,通常使用关系型数据库或大数据存储技术来存储大量的数据。3.数据整合(Integration):
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- 【AI】人工智能没那么神秘!
仇辉攻防
人工智能ai语言模型自然语言处理机器学习深度学习网络安全
AI是什么?人工智能(ArtificialIntelligence),英文缩写为AI。AI人工智能不是简单的应用程序,而是一类技术,包含机器学习、自然语言处理、计算机视觉等多个领域。AI系统通常由算法、数据、模型和代码组成,其中代码用于实现算法,数据用于训练模型,最终形成智能决策能力。AI可以嵌入到应用程序中,但其本身是一个复杂的技术体系。AI为什么这么聪明?AI之所以看起来很聪明,主要是因为它通
- 强化学习算法:蒙特卡洛树搜索 (Monte Carlo Tree Search) 原理与代码实例讲解
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
强化学习算法:蒙特卡洛树搜索(MonteCarloTreeSearch)原理与代码实例讲解关键词:蒙特卡洛树搜索,强化学习,决策树,搜索算法,博弈策略,应用场景,代码实现1.背景介绍1.1问题由来强化学习(ReinforcementLearning,RL)是人工智能领域的一个核心分支,专注于通过与环境交互,学习最优策略以实现特定目标。传统的强化学习算法,如Q-learning、SARSA等,通常依
- 大语言模型的分类及本地部署所需的硬件配置要求
Kelaru
LLM基础知识语言模型分类人工智能
1、大语言模型概念及作用大语言模型:(LargeLanguageModel,LLM)是一种基于深度学习的人工智能模型,它能够理解和生成自然语言[1]。简单来说,它就像一个“超级大脑”,能够处理各种语言任务,比如写文章、回答问题、翻译语言等;它通过训练大量的文本数据,学习语言的结构、语法、语义以及上下文关联,从而能够理解和生成与人类语言相似的文本。举个例子:如果你问它一个问题,比如:“为什么天空是蓝
- 开源mes系统_如何快速构建基于MES的开源云平台
weixin_39926613
开源mes系统
导读本文为2019工业互联网平台活动盘点文章,同时也欢迎广大工业互联网平台企业参与本次盘点。具体参与方式可加编辑微信号(13517202453)详细咨询。随着智能制造转型战略的持续推进,MES作为承载智能化生产制造过程的核心系统正在受到越来越多企业的关注。与此同时,工业互联网、大数据、云计算等技术的飞速发展和日渐成熟,正在不断赋予MES更多新功能。由此推动MES朝着智能化、平台化、云化的方向发展。
- 超级人类模型:机遇与挑战并存
XianxinMao
人工智能算法机器学习
标题:超级人类模型:机遇与挑战并存文章信息摘要:超级人类模型的对齐问题是人工智能领域最紧迫的挑战之一,既可能带来医疗、科学和经济等领域的巨大进步,也可能因认知鸿沟、失控风险和不可逆性导致灾难性后果。尽管OpenAI提出的“弱到强泛化”方法在某些任务上取得了一定成功,但其效果仍有限,且存在能力损失和任务依赖性等挑战。解决对齐问题需要提前研究、跨学科合作和国际协调,以确保超级人类模型的发展始终与人类价
- 新型大数据架构之湖仓一体(Lakehouse)架构特性说明——Lakehouse 架构(一)
m0_74825238
面试学习路线阿里巴巴大数据架构
文章目录为什么需要新的数据架构?湖仓一体(Lakehouse)——新的大数据架构模式同时具备数仓与数据湖的优点湖仓一体架构存储层计算层湖仓一体特性单一存储拥有数据仓库的查询性能存算分离开放式架构支持各种数据源类型支持各种使用方式架构简单数据共享schema过滤和推演时间回溯为什么需要新的数据架构?数据仓库和数据湖一直是实现数据平台最流行的架构,然而,过去几年,社区一直在努力利用不同的数据架构方法来
- Flux如何工作?这款新图像生成AI可与Midjourney一较高下
硅基创想家
AI-人工智能与大模型人工智能midjourneyFlux大模型人工智能生成图片
Flux是什么?Flux是黑森林实验室(BlackForestLabs)开发的一款新型人工智能图像生成模型。它代表了人工智能生成艺术领域的重大进展,采用了一种“混合架构”,将transformer和diffusion技术相结合,参数规模达120亿。该模型在图像生成方面具备顶尖性能,在精准遵循提示词、视觉质量、图像细节和输出多样性等方面表现卓越。谁创造了Flux?该模型由黑森林实验室推出。这是一家新
- 如何从零构建具身智能AI系统?
硅基创想家
AI-人工智能与大模型人工智能具身职能AI智能体
通过这份循序渐进的指南,学习构建能够独立感知、推理和行动的自主AI系统。在人工智能领域,具身智能AI系统正在重新定义自动化和决策流程。这些系统旨在自主运行,模仿人类的推理和行动能力。从自动驾驶汽车到智能虚拟助手,具身智能AI系统正在变革各个行业。在本指南中,我们将详细拆解从零构建具身智能AI系统的过程,涵盖关键组件、工具以及逐步指导,助你开启这一旅程。一、理解具身智能AI系统具身智能AI系统是一种
- 2024年机器学习高薪认证
科技评论AI
机器学习人工智能
在这个数字时代,各大公司都在优先考虑使用AI(人工智能)和ML(机器学习)来解决各种问题。机器学习已成为技术领域中最具活力和收益潜力的领域之一,其在组织中的日益整合导致对具有认证资格专业人士的需求增加。认证不仅有助于提高在这一领域的专业知识,而且还能增加他们的收入潜力。本文深入探讨了2024年最具高薪潜力的机器学习认证,以及它们的价格,以便为您提供详尽的展望并帮助您选择合适的认证。最高薪的机器学习
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro