- LVS负载均衡原理与实战配置详解
Sally璐璐
运维lvs负载均衡运维
一、LVS核心概念与架构LVS(LinuxVirtualServer)是由章文嵩博士在1998年开发的开源项目,现已成为Linux内核标准模块。它通过将网络请求智能分发到多个后端服务器,构建高性能、高可用的服务器集群,广泛应用于淘宝、YouTube等大型网站架构中。1.架构组件详解Director(调度器):作为整个集群的入口,运行ipvs内核模块主要功能:接收客户端请求、维护服务器列表、执行负载
- 阿里云百炼开源面向 Java 开发者的 NL2SQL 智能体框架
阿里云云原生
阿里云开源javasql
作者:李维、许起瑞随着大模型技术的快速发展,自然语言到SQL(NL2SQL)能力在数据分析领域的落地日益广泛。然而,传统NL2SQL方案存在Schema理解偏差、复杂查询生成效率低、执行结果不可控等问题,导致业务场景中频繁出现“答非所问”或“生成失败”的窘境。为了让更多开发者能够便捷地使用这一能力,我们决定将阿里云析言GBI中“Schema召回+SQL生成+SQL执行”的核心链路模块化、组件化,并
- 联盛新能源多项业务获行业认可,彰显光伏储能业务领域综合实力
联盛新能源
光伏储能联盛新能源储能光伏
近期,联盛新能源在光伏储能业务领域表现亮眼,旗下多项业务接连斩获行业重要奖项与荣誉,充分展现了其在清洁能源领域的实力与影响力。联盛新能源及旗下优得运维双双斩获PVBL光储行业重磅奖项联盛新能源荣获「PVBL2025光储行业卓越服务企业」优得运维荣获「PVBL2025光储行业最具影响力数字运维企业」联盛新能源嵩基储能项目跻身中国用户侧单体装机TOP10联盛新能源与嵩基集团合作的用户侧储能项目实力登榜
- 生成对抗网络(GAN)与深度生成模型实战
软考和人工智能学堂
人工智能Python开发经验#DeepSeek快速入门开发语言
1.生成模型基础与GAN原理1.1生成模型概览生成模型是深度学习中的重要分支,主要分为以下几类:变分自编码器(VAE):基于概率图模型的生成方法生成对抗网络(GAN):通过对抗训练学习数据分布自回归模型:PixelCNN、WaveNet等流模型(Flow-basedModels):基于可逆变换的精确密度估计扩散模型(DiffusionModels):最新兴起的生成方法1.2GAN核心思想GAN由生
- 阿里云百炼开源面向 Java 开发者的 NL2SQL 智能体框架
云原生sql
作者:李维、许起瑞随着大模型技术的快速发展,自然语言到SQL(NL2SQL)能力在数据分析领域的落地日益广泛。然而,传统NL2SQL方案存在Schema理解偏差、复杂查询生成效率低、执行结果不可控等问题,导致业务场景中频繁出现“答非所问”或“生成失败”的窘境。为了让更多开发者能够便捷地使用这一能力,我们决定将阿里云析言GBI中“Schema召回+SQL生成+SQL执行”的核心链路模块化、组件化,并
- 变分自编码器的扩展模型:条件VAE
AI天才研究院
AIAgent应用开发LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
变分自编码器的扩展模型:条件VAE作者:禅与计算机程序设计艺术1.背景介绍近年来,变分自编码器(VariationalAutoencoder,VAE)作为一种强大的生成式模型,在图像生成、文本生成等任务中展现出了卓越的性能。VAE通过学习数据分布的潜在表示,能够生成与训练数据相似的新样本。然而,标准的VAE模型无法对生成的内容进行控制,这限制了它在实际应用中的灵活性。为了解决这一问题,研究人员提出
- Python语言程序设计 嵩天
Avrillei
Python基础学习python开发语言
第一章Python基本语法元素程序设计基本方法计算机与程序设计计算机的概念摩尔定律Moore'sLaw计算机的发展程序设计程序设计语言编译和解释编程语言的执行方式编译解释静态语言和脚本语言程序的基本编写方法IPO问题的计算部分编程解决问题的步骤求解计算问题的精简步骤计算机编程学习编程的好处学习编程的误区Python开发环境配置Python语言概述Python的两种编程方式实例1温度转换问题分析实例
- 校园服务小程序/app系统开发,功能分许全拆解【源码】
hymuuuu
phpmysql
校园服务搭子小程序涵盖了众多实用的校园服务分类。从生活服务类的取快递、拿外卖、到学习类的图书馆占座、小组作业讨论、课程笔记共享,再到娱乐休闲类的一起看电影、逛校园、参加社团活动等,应有尽有。同学们可以根据自己的实际需求,在对应的服务分类下发布搭子需求或寻找合适的搭子信息。这样一来,无论是日常琐事还是兴趣爱好,都能轻松找到志同道合的伙伴。校园服务搭子小程序旨在为学生提供便捷的搭子寻找平台,满足校园生
- 生成式AI模型学习笔记
Humbunklung
机器学习人工智能学习笔记机器学习深度学习
文章目录生成式AI模型1.定义2.生成式模型与判别式模型3.深度生成式模型的类型3.1能量模型3.2变分自编码3.2.1变分自编码器(VariationalAutoencoder,VAE)简介3.2.2代码示例(以PyTorch为例)3.3生成对抗网络3.4流模型3.4.1流模型简介3.4.2NICE:开创性流模型3.4.3流模型与VAE、GAN的区别3.5自回归模型3.5.1自回归模型简介3.5
- 从 “被动拦截” 到 “智能预判”:下一代防火墙的五大核心技术突破
柏睿网络
人工智能
传统防火墙如同仅能按"剧本"执行的机械门卫,面对复杂多变的网络威胁时,常因规则滞后、检测粗放而陷入被动。下一代防火墙(NGFW)通过五大核心技术突破,构建起以"智能预判"为核心的主动防御体系,实现从"事后响应"到"事前阻断"的范式革命。一、AI驱动的威胁检测引擎:从规则匹配到行为建模技术突破机器学习驱动的异常检测抛弃传统的"特征码匹配"模式,采用无监督学习算法(如孤立森林、VAE变分自编码器)构建
- arm与鸿蒙的区别,猜想:若ARM与鸿蒙在笔记本领域相遇,许将掀起笔记本行业新变革...
血族之心
arm与鸿蒙的区别
经常出差的朋友一定遇到过笔记本没电,“满世界”找电源插头的尴尬场景吧。酒店Wi-Fi太慢了,简直如蜗速,而客户那边又急着等你传文件,你只能匆忙打开手机,开启个人热点共享,让笔记本通过手机热点改连4G网络。领导在微信群里回复了方案修改建议,叫你调整一下赶快回复给他,你得在电脑上登录网页版微信,通过文件传输助手把文件传到电脑里。真麻烦。一直以来,笔记本是移动办公的好帮手,但在体验上仍然存在很大的改进空
- 创意无限!利用Cpolar和Flux.1实现远程AI图像生成功能
秋说
前后端项目开发(新手必知必会)内网穿透人工智能AI图像处理
文章目录前言1.本地部署ComfyUI2.下载Flux.1模型3.下载CLIP模型4.下载VAE模型5.演示文生图6.公网使用Flux.1大模型6.1创建远程连接公网地址7.固定远程访问公网地址前言Flux.1是一款免费开源的图像生成模型,通过ComfyUI,你可以轻松调用这款强大的工具。Flux.1由BlackForestLabs黑森林实验室推出,而这个团队可不简单——它是由StabilityA
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- LVS负载均衡群集
UFIT
运维
LVS(LinuxVirtualServer)是一种基于Linux内核的高性能、开源的四层负载均衡解决方案,由章文嵩博士开发。它通过将客户端请求分发到多台后端服务器(RealServer)来实现负载均衡,提升系统的吞吐量、可用性和可扩展性。LVS核心组件负载均衡器(DirectorServer/LoadBalancer)负责接收客户端请求,并根据调度算法将请求转发到后端真实服务器。核心工具:ipv
- Comfyui基础文生图工作流所需的7个节点
AI魔法师9527
Comfyui工作流stablediffusion
1、大模型加载节点大模型加载节点是Comfyui的核心节点之一,用来加载训练好的模型文件,不同的模型包容性和偏向性不同,模型可以在C站(https://civitai.com)免费下载使用,也可以自己基于某个基础模型训练处自己的模型。大模型加载节点使用时选择一个模型路径,就可以输出三个值,模型、条件和VAE2、正向提示词节点正向提示词节点是我们控制AI生成走向的关键手段,通过描述不通的正向提示词,
- 智能守护校园“舌尖安全“:AI视频分析赋能名厨亮灶新时代
智联视频超融合平台
安全人工智能音视频网络协议视频编解码
引言:在校园食品安全备受关注的今天,一套融合视频监控管理平台与AI视频分析盒子的智能解决方案正在全国多地学校食堂悄然落地,为传统的"名厨亮灶"工程注入科技新动能。这套系统不仅实现了后厨操作的"透明化",更通过人工智能技术实现了违规行为的"智能化识别",将食品安全风险扼杀在萌芽状态,让家长更安心,让监管更高效。一、引用某日报2025年4月22日文章:(4月21日17时许,食品安全智慧监管信息化平台系
- Stable Diffusion底模对应的VAE推荐
Liudef06小白
stablediffusion
以下是主流StableDiffusion底模对应的VAE推荐表格:底模版本推荐VAE类型说明SD1.5SD1.5专用VAE通常使用vae-ft-mse-840000-ema-pruned.safetensorsSD2.0SD1.5兼容VAE或SD2专用VAE部分SD2模型需配套512-ema-only.vae.ptSD3内置VAESD3系列模型通常自带集成VAE无需额外配置SDXLSDXL专用VA
- 一文解析13大神经网络算法模型架构
攻城狮7号
AI前沿技术要闻深度学习神经网络人工智能机器学习
目录一、引言:神经网络的演进脉络二、基础架构:深度学习的基石2.1人工神经网络(ANN)2.2深度神经网络(DNN)三、专项任务架构:领域定制化突破3.1卷积神经网络(CNN)3.2循环神经网络(RNN)3.3图神经网络(GNN)四、生成模型:从数据到创造4.1生成对抗网络(GAN)4.2变分自编码器(VAE)4.3扩散模型(DiffusionModels)五、现代架构:大模型的核心引擎5.1Tr
- 使用 dotnet watch 开发 ASP.NET Core 应用程序
dotNET跨平台
原文:DevelopingASP.NETCoreapplicationsusingdotnetwatch作者:VictorHurdugaci翻译:谢炀(Kiler)校对:刘怡(AlexLEWIS)、许登洋(Seay)介绍dotnetwatch是一个开发阶段在源文件发生变动的情况下使用dotnet命令的工具。当代码发生变动的时候可以用来执行编译,运行测试,或者发布操作。在本教程中,我们将使用一个现有
- 【图像生成大模型】Wan2.1:下一代开源大规模视频生成模型
白熊188
图像大模型开源音视频人工智能计算机视觉文生图
Wan2.1:下一代开源大规模视频生成模型引言Wan2.1项目概述核心技术1.3D变分自编码器(Wan-VAE)2.视频扩散Transformer(VideoDiffusionDiT)3.数据处理与清洗项目运行方式与执行步骤1.环境准备2.安装依赖3.模型下载4.文本到视频生成单GPU推理多GPU推理5.图像到视频生成6.首尾帧到视频生成执行报错与问题解决1.显存不足2.环境依赖问题3.模型下载问
- Step1X-3D:实现高保真和可控 纹理 3D 资产的生成
吴脑的键客
AI作画3d人工智能开源AIGC
虽然生成式人工智能在文本、图像、音频和视频领域取得了显著进展,但由于数据稀缺、算法限制和生态系统碎片化等根本性挑战,3D生成仍然相对不发达。为此,我们提出了Step1X-3D,一个通过以下方式解决这些挑战的开放框架:(1)一个严格的数据处理流程,处理超过500万个资产,创建一个包含200万个高质量数据集的标准化几何和纹理属性;(2)一个两阶段的3D原生架构,结合了混合VAE-DiT几何生成器和基于
- 生成式人工智能:创意产业的变革力量
Blossom.118
分布式系统与高性能计算领域人工智能去中心化区块链交互web3机器学习目标检测
引言随着人工智能技术的飞速发展,生成式人工智能(GenerativeAI)逐渐成为科技领域的热门话题。生成式人工智能通过深度学习算法,能够生成文本、图像、音乐、视频等多种内容,为创意产业带来了前所未有的机遇。本文将探讨生成式人工智能在创意产业中的应用、技术原理以及未来的发展趋势。一、生成式人工智能简介(一)定义与原理生成式人工智能是一种利用深度学习算法(如生成对抗网络GAN、变分自编码器VAE和T
- 深度解析:Stable Diffusion模型架构与调参秘籍
AI原生应用开发
stablediffusion架构ai
深度解析:StableDiffusion模型架构与调参秘籍关键词:StableDiffusion、扩散模型、潜在空间、U-Net、调参优化、生成式AI、CLIP文本编码器摘要:本文从技术原理到实战调参,深度解析StableDiffusion的核心架构与优化技巧。首先拆解其“潜在空间扩散+多模态条件控制”的创新设计,详细讲解VAE、U-Net、CLIP文本编码器的协同机制;接着通过数学公式与Pyth
- 信息安全-数据安全-字节大数据平台安全与权限治理实践
码者人生
信息安全数据安全安全数据安全大数据安全权限治理权限回收
导读:本次分享题目为字节跳动大数据平台安全与权限治理实践,文章会围绕下面四点展开:字节大数据安全体系现状和难点细粒度权限管控和治理资产保护能力数据删除能力分享嘉宾|许从余火山引擎数据平台产品经理编辑整理|杨佳慧出品社区|DataFun01字节大数据安全体系现状和难点第一部分首先分享字节跳动大数据平台安全与权限治理平台的完整体系以及目前的现状和面临的难点。1.字节跳动大数据安全产品体系数据分类分级:
- AI大模型全景干货:分类、特点、应用、数据与学习指南
程序员辣条
人工智能大模型训练大模型AI大模型程序员大模型入门大模型教程
随着人工智能技术的飞速发展,AI大模型在众多领域取得了显著成果。本文将介绍AI大模型的种类、特点、应用及其详细数据。一、AI大模型的分类1、按模型结构分类(1)深度神经网络(DNN):包括卷积神经网络(CNN)、循环神经网络(RNN)等。(2)生成对抗网络(GAN):通过对抗训练,使生成模型能够生成与真实数据分布相近的数据。(3)变分自编码器(VAE):通过编码器和解码器实现对数据的压缩和重建。2
- 【神经网络与深度学习】VAE 中的先验分布指的是什么
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能
VAE中的先验分布是什么?在变分自编码器(VAE)中,先验分布指的是对潜在空间中随机变量的概率分布假设。通常情况下,VAE设定潜在变量服从标准正态分布(N(0,I)),其中(0)代表均值为零的向量,(I)为单位协方差矩阵。选择标准正态分布作为先验分布的原因主要有以下几点:数学上的便利性:标准正态分布具有良好的数学性质,计算和推导更加简洁,便于模型的优化和训练。结构化的潜在空间:这种假设能够促使模型
- AI大模型干货 | AI大模型的分类、特点、应用、详细数据、如何学习大模型?
大模型RAG实战
人工智能学习AI大模型大模型LLMaiagi
随着人工智能技术的飞速发展,AI大模型在众多领域取得了显著成果。本文将介绍AI大模型的种类、特点、应用及其详细数据。一、AI大模型的分类1、按模型结构分类(1)深度神经网络(DNN):包括卷积神经网络(CNN)、循环神经网络(RNN)等。(2)生成对抗网络(GAN):通过对抗训练,使生成模型能够生成与真实数据分布相近的数据。(3)变分自编码器(VAE):通过编码器和解码器实现对数据的压缩和重建。2
- 深入浅出:AIGC条件生成模型架构解析
AI天才研究院
AIGC架构ai
深入浅出:AIGC条件生成模型架构解析关键词:AIGC、条件生成模型、生成对抗网络、变分自编码器、Transformer、扩散模型、多模态生成摘要:本文系统解析AIGC(人工智能生成内容)领域中条件生成模型的核心架构与技术原理。从基础概念出发,对比条件生成与无条件生成的本质区别,深入剖析条件GAN、条件VAE、基于Transformer的条件生成模型及扩散模型的架构设计与数学原理。通过Python
- 【神经网络与深度学习】普通自编码器和变分自编码器的区别
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能自编码器变分自编码器
引言自编码器(Autoencoder,AE)和变分自编码器(VariationalAutoencoder,VAE)是深度学习中广泛应用的两类神经网络结构,主要用于数据的压缩、重构和生成。然而,二者在模型设计、训练目标和生成能力等方面存在显著区别。普通自编码器侧重于高效压缩数据并进行无损重构,而变分自编码器则通过潜在空间的概率分布,增强了模型的生成能力和泛化性能。本文将从多个角度探讨AE和VAE的不
- 高级爬虫优化:如何处理大规模数据抓取与分布式爬虫架构
一碗黄焖鸡三碗米饭
爬虫实战爬虫分布式架构开发语言pythonjava
目录高级爬虫优化:如何处理大规模数据抓取与分布式爬虫架构一、爬虫架构的挑战二、大规模数据抓取的关键因素2.1分布式爬虫架构2.2关键技术组件ApacheKafkaRedis三、设计分布式爬虫架构3.1系统架构设计3.2任务调度系统示例:使用Kafka发布任务3.3爬虫节点实现示例:使用Redis去重并抓取网页3.4数据存储3.5分布式协调与容错机制四、总结在信息化时代,数据抓取(爬虫技术)已成为许
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod