R语言学习——绘制热图

deg=read.table('/Users/zhangzhishuai/Downloads/32 R热图/32_eatmap/MIR_DEG_fc_2.5_pval_0.01.txt',header = T,sep = '\t',row.names = 1)
expr=read.table('/Users/zhangzhishuai/Downloads/32 R热图/32_eatmap/miRNA_expr.txt',header = T,sep = '\t',row.names = 1)
type=factor(rep(c('RR','CC'),each=3))
miRNA=rownames(deg)
data=as.matrix(expr[miRNA,])
heatmap(data)
heatmap(
  data,
  cexCol = 0.8, # 控制字体大小 col/row
  scale = 'row' # 对不同数据按照行进行尺度转换
)

# R原生配色方案
heatmap(data,col=cm.colors(256))
heatmap(data,col=terrain.colors(256))

# Rcolorbrewer 配色方案
library(RColorBrewer)
par(mfrow=c(1,1)) #几行几列个图
barplot(1:8,col = brewer.pal(8,'PiYG'))
coul <- colorRampPalette(brewer.pal(8,'PiYG'))(25) # 将8个变成25个,渐变色
heatmap(
  data,
  col=coul,
  # Rowv = NA, # 不显示左边的线
  # Colv = NA # 不显示上边的线
)

# 颜色标注样本
colside <- c('red','blue')[type]
p = heatmap(
  data,
  cexCol = 0.8,
  #labCol = '', #不显示下面的组名
  ColSideColors = colside
)
legend(
  'topright',
  legend = levels(type),
  col = c('red','blue'),
  pch = 15,
  bty = 'n',
  cex = 0.7
)

MIR_DEG_fc_2.5_pval_0.01.txt:

                    logFC   AveExpr         t       PValue         FDR        B
hsa-miR-375      1.075435  8.828953  9.548597 9.252706e-06 0.002965144 4.164644
hsa-miR-100-5p   6.992545 10.098290  9.347675 1.089106e-05 0.002965144 3.999978
hsa-miR-205-5p  -1.453240  5.571316 -8.990997 1.465475e-05 0.002965144 3.720600
hsa-miR-194-5p  -1.468509  9.701050 -8.603322 2.046487e-05 0.003105544 3.353541
hsa-miR-302b-3p -1.401613  4.024086 -6.560525 1.494008e-04 0.010720480 1.468262

miRNA_expr.txt:

                 CC.CR.rep1 CC.CR.rep2 CC.CR.rep3 CC.rep1 CC.rep2 CC.rep3
hsa-miR-576-3p       3.0179     2.3151     2.6573  2.3487  2.7519  2.7336
hsa-miR-140-5p       7.3453     7.2257     7.4967  6.8609  7.2546  7.3039
hsa-miR-522-5p      -2.9822    -3.2561    -3.8133 -2.5675 -3.5901 -3.6494
hsa-miR-4743-3p     -2.9822    -3.2561    -3.8133 -2.5675 -3.5901 -2.0644
hsa-miR-548av-5p    -1.9822    -1.2561    -1.9388 -0.9825 -2.5901 -2.6494

你可能感兴趣的:(r语言,学习,开发语言)