- FastSAM:高效图像分割算法详解与实战
阿qi 爱喝拿铁
本文还有配套的精品资源,点击获取简介:图像分割在图像处理领域中起着至关重要的作用,而FastSAM作为一种高效的图像分割算法,结合了像素的局部特征与全局信息,以自适应聚类方式实现了快速且精确的像素级别分割。其采用基于密度的空间聚类方法处理噪声和不规则形状,自适应策略调整聚类参数以增强泛化能力,并优化计算流程实现并行化处理以提升运行速度。FastSAM算法在医疗、自动驾驶等多个领域具有广泛应用前景。
- Opencv之图像SIFT 特征检测与Harris角点检测
是十一月末
opencvopencv计算机视觉人工智能python特征检测
图像SIFT特征检测与Harris角点检测目录图像SIFT特征检测与Harris角点检测1SIFT特征检测1.1概念1.2主要步骤1.3优缺点1.4函数及参数2Harris角点检测2.1概念2.2**算法思想**2.3特点2.4函数及参数3角点、特征检测3.1焦点、特征检测代码及结果1SIFT特征检测1.1概念SIFT(尺度不变特征变换)是一种用于图像处理中检测和描述图像中局部结构的算法。它是由D
- 算法-图-查找路径
程序员南飞
算法java数据结构职场和发展leetcode
力扣题目:1971.寻找图中是否存在路径-力扣(LeetCode)有一个具有n个顶点的双向图,其中每个顶点标记从0到n-1(包含0和n-1)。图中的边用一个二维整数数组edges表示,其中edges[i]=[ui,vi]表示顶点ui和顶点vi之间的双向边。每个顶点对由最多一条边连接,并且没有顶点存在与自身相连的边。请你确定是否存在从顶点source开始,到顶点destination结束的有效路径。
- 数据采集技术:selenium/正则匹配/xpath/beautifulsoup爬虫实例
写代码的中青年
3天入门机器学习seleniumbeautifulsoup爬虫pythonxpath正则表达式
专栏介绍1.专栏面向零基础或基础较差的机器学习入门的读者朋友,旨在利用实际代码案例和通俗化文字说明,使读者朋友快速上手机器学习及其相关知识体系。2.专栏内容上包括数据采集、数据读写、数据预处理、分类\回归\聚类算法、可视化等技术。3.需要强调的是,专栏仅介绍主流、初阶知识,每一技术模块都是AI研究的细分领域,同更多技术有所交叠,此处不进行讨论和分享。数据采集技术:selenium/正则匹配/xpa
- BCPD++(非刚性配准) 算法原理详解
点云SLAM
点云数据处理技术算法BCPD++非刚性拼接点云数据处理贝叶斯模型
BCPD++算法原理详解一、算法概述BCPD++(BayesianCoherentPointDrift++)是BCPD(BayesianCoherentPointDrift)的增强版本,专为非刚性点云配准设计。它基于贝叶斯概率框架,结合变分推断与高效优化策略,显著提升了配准精度、鲁棒性与计算效率。BCPD++的核心创新在于:分层贝叶斯模型:自适应学习超参数,减少人工调参需求。变分贝叶斯推断:替代传
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- CPD(Coherent Point Drift)非刚性点云配准算法
点云SLAM
点云数据处理技术算法概率论机器学习非刚性配准CPD配准算法EM算法非刚性拼接
CPD(CoherentPointDrift)非刚性点云配准算法详解一、算法概述CPD(CoherentPointDrift)是一种基于概率模型的非刚性点云配准方法,由AndriyMyronenko等人在2009年提出。它通过将点云配准问题转化为概率密度估计问题,结合高斯混合模型(GMM)与正则化形变场,能够有效处理复杂形变(如人体运动、器官形变)的点云对齐任务。核心特点:非刚性对齐:支持大范围、
- 解读 DeepSeek 关键 RL 算法 GRPO
进一步有进一步的欢喜
LLM算法DeepSeekGRPO
DeepSeekGRPO:面向超大规模RLHF的梯度正则化策略优化算法引言在当下人工智能蓬勃发展的浪潮里,DeepSeek无疑是一颗耀眼的明星,频繁出现在各类科技前沿讨论中,热度持续攀升。从惊艳的模型表现,到不断拓展的应用场景,DeepSeek正以强劲之势重塑着行业格局。大家不难发现,无论是复杂的自然语言处理任务,还是充满挑战的智能推理难题,DeepSeek都能展现出卓越的性能。而这斐然成绩的背后
- java开发工程师面试技巧
酷爱码
经验分享java面试开发语言
Java开发工程师面试是一个常见的技术岗位面试,以下是一些面试技巧和建议:熟悉Java基础知识:在面试中,会经常被问到Java基础知识,包括面向对象编程、集合框架、异常处理、多线程等内容。要确保对这些知识点有扎实的掌握。练习编程题目:在面试中,通常会有编程题目要求,因此建议提前练习一些常见的编程题目,例如算法和数据结构题目。深入了解项目经历:准备好详细了解自己之前的项目经历,包括项目的背景、自己的
- 2024年前端框架选择指南:React、Vue、Angular与新兴框架对比
海豹工匠
前端框架
在当今快速发展的前端技术领域,选择合适的框架对于项目成功至关重要。本文将深入探讨主流前端框架的特点、优缺点及适用场景,为开发者提供全面的选择指南。主流框架概览React特点:基于组件的开发方式,虚拟DOM差分算法优点:灵活性强,生态系统丰富缺点:需要学习JSX和状态管理库适用场景:中大型项目,需要高度灵活性和复杂状态管理的应用Vue特点:简单易学,模板直观,内置状态管理优点:学习曲线平缓,适合快速
- 使用 yolov8 进行对象检测
算法资料吧!
YOLO
在计算机视觉领域,YOLOv8对象检测确实以其超高的准确性和速度而脱颖而出。它是YOLO系列的最新版本,以能够实时检测物体而闻名。YOLOv8凭借其一流的对象检测将Web应用程序、API和图像分析提升到一个新的水平。在本文中,我们将了解如何利用yolov8进行对象检测。YOLO概述YOLO(YouOnlyLookOnce)是一种改变游戏规则的对象检测算法,于2015年问世,以其一次闪电般快速处理整
- 为什么你的硬盘容量总是缩水?512G的硬盘查看发现只有476G?纯小白也能看懂
*星之卡比*
科普硬件工程电脑科技
文章目录为什么电脑容量是512G但是查看的时候总是比512G少?原因一:OP空间使用OP空间的好处:OP空间的大小:原因二:硬盘厂商(十进制)和windows系统(二进制)使用的进制算法不同名词解释为什么电脑容量是512G但是查看的时候总是比512G少?原因一:OP空间op空间(Over-Provisioning空间),是是指额外预留的存储空间,超出用户可用存储容量的部分。简单来说,OP空间是一种
- 代码随想录算法训练营Day57 | 拓扑排序精讲、dijkstra(朴素版)精讲
Harryline-lx
代码随想录算法
文章目录117.软件构建思路与重点47.参加科学大会思路与重点117.软件构建题目链接:117.软件构建讲解链接:代码随想录状态:一遍AC。思路与重点概括来说,给出一个有向图,把这个有向图转成线性的排序就叫拓扑排序。拓扑排序也是图论中判断有向无环图的常用方法。拓扑排序模板题。#include#include#include#includeusingnamespacestd;intmain(){in
- Linux+conda+R+Rstudio下载安装环境全方面配置
爱吃鱼子酱
程序语言大数据linuxcondar语言
很多小伙伴不习惯在R中用到conda环境,其实这可能是因为你还没有使用到对环境有更高要求的包。假如我们想安装R包A,它要求的R版本是4.3.0,但是你现在R版本是4.2.0,并且你其他的算法包都是根据4.2.0所创建的,那么就会造成这个包装不上的尴尬场景。此外,conda还能帮你解决安装R包时出现的各种系统错误(例如gcc版本等)conda环境可以为每个项目创建一个单独的环境,刚开始用可能比较棘手
- 数据结构------最短路弗洛伊德算法(Flody)
不羁修士
数据结构c++图论数据结构图搜索算法动态规划
目录前言一、Foldy代码核心介绍二、Flody代码详解:三、所有代码:四、Foldy算法分析:总结前言如果你要求所有顶点至所有顶点的最短路径问题时,弗洛伊德算法是非常不错的选择。因为它十分简洁。一、Foldy代码核心介绍(1)两个二维数组D[v][w]和P[v][w],分别存最短距离和最短路径。(2)D[v][w]=min(D[v,w],D[v][k]+D[k][w])二、Flody代码详解:/
- 代码随想录算法训练营第58天|拓扑排序精讲、dijkstra(朴素版)精讲
Yinems
算法
打卡Day581.拓扑排序精讲2.dijkstra(朴素版)精讲1.拓扑排序精讲题目链接:拓扑排序精讲文档讲解:代码随想录给出一个有向图,把这个有向图转成线性的排序就叫拓扑排序。拓扑排序要检测这个有向图是否有环,即存在循环依赖的情况,因为这种情况是不能做线性排序的。所以拓扑排序是图论中判断有向无环图的常用方法。拓扑排序的过程,有两步,第一步,找到入度为0的节点,加入结果集;第二步,将该节点从图中移
- 【Qt】14 计算器核心解析算法(下)
c++
一、后缀表达式中的数字与运算符后缀表达式的数字和运算符当前元素为数字:进栈当前元素的运算符1.从栈中弹出右操作符2.从栈中弹出右操作符3.根据符号进行运算4.将运算结果压入栈中遍历结束栈中的唯一数字为运算结果。while(!exp.isEmpty){if(当前元素为数字){入栈;}elseif(当前元素为运算符){1.从栈中弹出右操作符2.从栈中弹出右操作符3.根据符号进行运算4.将运算结果压入栈
- 《人工智能之高维数据降维算法:PCA与LDA深度剖析》
机器学习人工智能
在人工智能与机器学习蓬勃发展的当下,数据处理成为关键环节。高维数据在带来丰富信息的同时,也引入了计算复杂度高、过拟合风险增大以及数据稀疏性等难题。降维算法应运而生,它能将高维数据映射到低维空间,在减少维度的同时最大程度保留关键信息。主成分分析(PCA)与线性判别分析(LDA)作为两种常用的降维算法,在人工智能领域应用广泛。本文将深入探讨它们的原理。PCA:无监督的降维利器核心思想PCA基于最大方差
- 【leetcode刷题版】哈希表
学废了wuwu
leetcode算法python哈希算法
系列文章目录文章目录系列文章目录背景知识一、有效的字母异位词二、两个数组的交集三、快乐数四、两数之和五、四数相加六、赎金信七、三数之和八、四数之和背景知识哈希函数(HashFunction):哈希函数是一种将任意长度的输入(键)通过某种算法转换为固定长度的输出(哈希值)的函数。好的哈希函数应该能够将输入均匀地分布在哈希表中,以减少冲突。冲突(Collision):当两个不同的键通过哈希函数得到相同
- 【leetcode刷题版】回溯算法
学废了wuwu
算法leetcodepython
系列文章目录文章目录系列文章目录背景知识一、组合二、组合优化三、电话号码的字母组合四、组合总和五、组合总和Ⅱ六、分割回文串七、复原IP地址八、子集九、子集(需要去重)十、非递减子序列十一、全排列十一、全排列Ⅱ十二、重新安排行程(难)十三、N皇后十四、解数独背景知识回溯算法是一种通过试错来解决问题的算法。它会在解决问题的过程中剪枝,以避免无效搜索。在Python中实现回溯算法通常涉及以下几个步骤:定
- 【动手学运动规划】2.6 Reeds Shepp曲线
自动驾驶小白说
动手学运动规划自动驾驶算法运动规划
我出来打工,我不惦记钱,我惦记什么?—武林外传黄豆豆代码及环境配置:请参考环境配置和代码运行!ReedsShepp,通常简称为RS曲线,是一种用于路径规划的算法,由J.A.Reeds和L.A.Shepp在1990年的论文《OptimalPathsforaCarThatGoesBothForwardsandBackwards》中提出。该算法主要用于描述机器人或车辆在平面上的运动轨迹,特别是在需要考虑
- 使用django调用deepseek api,搭建ai网站
陈王卜
人工智能
一、deepseek简介DeepSeek是一家人工智能公司,专注于开发先进的人工智能模型和技术。以下是关于DeepSeek的一些详细介绍:1.公司背景DeepSeek由杭州深度求索人工智能基础技术研究有限公司开发,致力于通过创新的技术和算法,推动人工智能领域的发展。2.技术与模型DeepSeek-V3:这是DeepSeek开发的一个大型语言模型,具有超过600B的参数,在多项性能指标上与国际顶尖模
- 避免死锁的方式
蜗牛^^O^
java
1、加锁顺序保持一致2、加锁不成功,立即释放所有抢占到的锁3、银行家算法银行家算法:使用向量维护所有闲置资源每个进程不断申请的资源向量已知比如P0进程需要申请a向量,还需要申请b向量P1进程需要申请c向量,还需要申请d向量通过预判演算出一种安全序列,谁先申请谁后申请,谁先释放,释放后在申请。争取实现资源的最大化利用。但是这种算法不现实,因为每个进程申请的资源是不可预知。每个进程请求资源时,先预判是
- DirectX12(D3D12)基础教程 二“纹理”
指掀涛澜天下惊
d3d12c++vc3dc++visualstudiowindows开发语言
什么是纹理,简单理解叫贴图,比如现在一张1920X1080图片要显示在1920X1080的窗口上,那么图片像素与窗口一一对应简单的复制粘贴。如果图片大小与目标大小不一样时通过某种算法实现显示目标窗口上,这就叫纹理过滤。纹理坐标范围0到1,原点在左下角使用d3d12窗口显示一张图片,如果用gdi+现实简单多了,调用一个函数就可以解决。1.读取图片信息大小,像素深度BPP,d3d12所要的格式,数据。
- 深入了解React Fiber:React的新架构
糖糖老师436
react.js架构前端
ReactFiber是React16引入的一种全新的协调引擎,旨在解决旧版React在性能和灵活性方面的不足。本文将深入探讨ReactFiber的工作原理、其背后的设计理念,以及它如何提升应用的性能。我们会用通俗易懂的语言,帮助你轻松理解这个复杂的概念,并通过代码示例来进一步解释。1.什么是ReactFiber?ReactFiber是对React核心算法的一次彻底重构。旧版的React使用的是“S
- C++的Find算法用法,
-Mr_X-
c++算法
在C++中,可以使用std::map统计值出现次数为2的键。具体步骤如下:遍历std::map,找出所有值为2的键。使用条件语句检查每个值,符合条件时记录对应键。#include#include#includeintmain(){//创建一个std::map并插入数据std::mapdata={{1,2},{2,3},{3,2},{4,1},{5,2}};//用于存储值为2的键std::vecto
- DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?
爱吃青菜的大力水手
人工智能
DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?正面影响分析算力需求与成本大幅降低DeepSeek通过算法优化(如稀疏计算、知识蒸馏)和模型压缩技术,将云端训练算力需求降至传统大模型的35%,车端推理芯片需求减少至65%。例如,某车企使用高通8650平台后,智驾系统成本显著下降。这种优化使得中小企业能以更低成本部署AI,甚至支持本地化私有化部署(如金融行业案例),同时减少对英伟达高
- DeepSeek:突破闭源封锁,引领大模型新时代
fanstinmsl
算法语言模型
近年来,人工智能领域蓬勃发展,大模型作为其中的核心技术,其重要性不言而喻。然而,大模型的训练和部署往往面临着硬件依赖性强、成本高昂、效率低下等挑战。DeepSeek的出现,为解决这些问题提供了全新的思路和方案。DeepSeek的核心优势:1.减少硬件依赖:DeepSeek通过算法优化和架构创新,降低了对高性能硬件的依赖,使得大模型的训练和部署可以在更广泛的硬件平台上进行,极大地降低了应用门槛。**
- 【Qt】13 计算器核心解析算法(中)
c++
一、中缀转后缀中缀表达式转后缀表达式的过程类似编译过程四则运算符表达式中的括号必须匹配根据运算符优先级进行转化转换后的表达式没有括号转换后可以顺序的计算出最终结果转换过程:当前元素e为数字:输出当前元素e为运算符:1.与栈顶运算符进行优先级比较2.小于等于:将栈顶元素输出,转13.大于:将当前元素e入栈当前元素e为左括号,入栈当前元素e为右括号:1.弹出栈顶元素并输出,直至栈顶元素为左括号2.将栈
- python阈值计算_基于Python的阈值分割算法实现(二)
weixin_39872222
python阈值计算
引言前文我们讨论了关于实现OTSU算法的问题,该算法主要是针对于特征值阈值的确定,这个值可以用于论文讨论和说明。但实际情况中,我们需要对图像进行各种滤波,预处理,那么此时我们可能需要一种带坐标和投影的分割结果,本文就将带大家实现对图像进行阈值分割后进行结果的输出。本文代码共包含了四种不同的分割算法,分别是三角阈值分割法、Riddler-Calvard分割法、自适应局部均值分割法、自适应局部高斯分割
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟