elasticsearch搜索与聚合常用DSL语句

主要了解query、bool(must、should、must_not)、term、match、range、filter、size、from、cardinality等。

换句话说需要了解索引、类型、分词查询、精确查询、全文查询、排序、去重、求最大值、平均值、分页等,其实和数据库蛮相似的,理解着学习就好。

下面是一些elasticsearch教程和参考的一些常用语法例子。

https://es.xiaoleilu.com/
https://blog.csdn.net/u014589856/article/details/78135762
https://www.cnblogs.com/leeSmall/p/9215909.html

下面是常用到的一些DSL语句例子:

//查看集群相关信息
GET _cluster/health
//查看集群信息里的索引清单,以及有关每个索引的细节(状态、分片数、未分配分片数等等)
GET _cluster/health?level=indices
//查询所有的索引名称和健康信息:
GET /_cat/indices
//查看指定索引下所有字段及字段类型
GET customer/_mapping
//查询所有索引的别名:
GET /_alias
//查看索引customer_vhx的别名
GET customer_vhx/_alias/
//查看集群健康
GET  /_cat/health?v   
//集群中节点列表
GET  /_cat/nodes?v     
-------------------------------搜索---------------------------------------------------------------------------------------------------------------------------------------------------------
  //添加一个记录
PUT /megacorp/employee/1                                         //megacorp为索引名,employee为记录名,1为id。若没有索引名、记录名则创建再添加
{
    "first_name" : "John",                                                  //first_name、last_name、age等都为字段,对应的是具体的值
    "last_name" :  "Smith",
    "age" :        25,
    "about" :      "I love to go rock climbing",
    "interests": [ "sports", "music" ]
}


//简单查询索引为megacorp,记录为employee,id为1的记录
GET /megacorp/employee/1

  //简单查询所有employee信息
GET  /megacorp/employee/_search  



//简单查询last_name字段为Smith的记录,q为变量
GET /megacorp/employee/_search?q=last_name:Smith



//DSL查询last_name字段为Smith的记录
GET /megacorp/employee/_search
{
    "query" : {                                                      //query查找
        "match" : {                                                  //match匹配属于分词匹配(除了match还有match_prase和match_all),term匹配属于精确匹配
            "last_name" : "Smith"
        }
    }
}



//DSL查询last_name字段为tao的记录
GET /megacorp/employee/_search
{
    "query" : {                                                      //query查找
        "term" : {                                                  //term匹配属于精确匹配
            "last_name" : "tao"
        }
    }
}



//DSL查询bool语句。如果bool语句中must不存在,则必须至少有一个should
GET /megacorp/ employee/_search
{
   "query": {                              //查询
      "bool": {
     	 "must": {
      	      "match": {
        		  "last_name": "Smith"
       		   }
    	   },
          "filter": {   //查询的同时通过filter过滤出符合年龄为32的现实
               "term": {
                   "age": 32
               }
           }
        }
    }
}



//DSL查询年龄大于32的
GET /megacorp/ employee/_search
{
   "query”: {
	  "bool": {
	      "filter": {
	          "range": {
		          "age": {
		              "gt": 32
	              }
	          }
	       }
        }
     }
}


//DSL排序
GET /megacorp/ employee/_search
{
   "sort": [
      {
       "age": {                                //按照年龄排序
          "order": "desc"
      }
    }
  ]
}
-------------------------------聚合---------------------------------------------------------------------------------------------------------------------------------------------------------

//求age最大值
GET /megacorp/ employee/_search
{
  "size": 0, 
  "aggs": {                       //表示聚合
    "test": {                     //自己起的聚合名
      "max": {
        "field": "age"               //字段为age
      }
    }
  }
}



//求age平均值
POST  /megacorp/ employee/_search
{
           
 "aggs": {
    "avg_age": {
      "avg": {                                  //求age平均值,若没有age的age指定为23再计算
        "field": "age",
        "missing": 23
      }
    }
  }
}



//stats 统计age的 count max min avg sum 5个值
POST  /megacorp/ employee/_search
{
           
 "aggs": {
    "age_stats": {
      "stats": {
        "field": "age"
      }
    }
  }
}




//terms字段值分组聚合,默认情况下返回按文档计数从高到低的前10个分组
POST  /megacorp/ employee/_search
{
 "aggs": {
    "age_terms": {
      "terms": {                                  //根据字段值分组聚合,结果 "key": 23,"doc_count": 2意思是年龄为23的文档有2个
        "field": "age""size": 2                                 //返回一个分组,没有这句则默认返回按文档计数从高到低的前10个分组
      }
    }
  }
}


//cardinality去重
POST  /megacorp/ employee/_search
{
   "aggs": {
        "group_test": {
             "cardinality": {                         //去重计算age的人数
                   "field": "age"
                }
           }
      }
}

实例:
假如A、B、C三个人,每个人的文档里的one_account.one_account_no都是1489,那么统计A、B、C的总资产的和.
下面的示例统计具有相同one_account.one_account_no是1489、1488、110600000858的总资产的和:

GET customer/_search
{
  "size": 0,
  "query": {
    "bool": {
      "filter": [
        {
          "terms": {
            "one_account.one_account_no": [
              "1489",
              "1488",
              "110600000858"
            ]
          }
        }
      ]
    }
  },
  "aggregations": {
    "statistics_assets": {
      "terms": {
        "field": "one_account.one_account_no",
        "size": 10
      },
      "aggregations": {
        "assets": {
          "sum": {
            "field": "assets.merge"
          }
        }
      }
    }
  }
}

结果:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 6,
    "successful" : 6,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 14,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "statistics_assets" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "1488",
          "doc_count" : 7,
          "assets" : {
            "value" : 62683.2
          }
        },
        {
          "key" : "1489",
          "doc_count" : 6,
          "assets" : {
            "value" : 9.805486535E7
          }
        },
        {
          "key" : "110600000858",
          "doc_count" : 1,
          "assets" : {
            "value" : 9.805486522E7
          }
        }
      ]
    }
  }
}

可以看到one_account.one_account_no是1488的文档有7个,7个文档总资产相加是62683.2

Java代码:

        //获取当前页的所有一户通号,并通过一户通号聚合该一户通下的客户总资产
        List<String> list = new ArrayList<>();
 		list.add("1489");
		list.add("1488");
		list.add("110600000858");
		SearchRequest searchRequest = new SearchRequest("customer");
        searchRequest.types("customer_info");
        BoolQueryBuilder boolAssetBuilder = QueryBuilders.boolQuery();
        boolAssetBuilder.filter(QueryBuilders.termsQuery("one_account.one_account_no",list));
        SearchSourceBuilder searchAssetBuilder = new SearchSourceBuilder();
        searchAssetBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
        searchAssetBuilder.size(pageSize);
        searchAssetBuilder.query(boolAssetBuilder);
        AggregationBuilder assetsAggregation = AggregationBuilders.sum("assets").field("assets.merge");
        AggregationBuilder AggregationBuilder1 = AggregationBuilders.terms("statistics_assets").field("one_account.one_account_no").size(pageSize).subAggregation(assetsAggregation);
        searchAssetBuilder.aggregation(AggregationBuilder1);
        searchRequest.source(searchAssetBuilder);
        SearchResponse searchAssetsResponse = null;

        try {
            searchAssetsResponse = restHighLevelClient.search(searchRequest);
        } catch (IOException e) {
            e.printStackTrace();
        }

        Map<String, String> map = new HashMap<>();//存储es返回的所有的key和value
        List<Aggregation> aggList = searchAssetsResponse.getAggregations().asList();
        List<? extends Terms.Bucket> buckets = new ArrayList<>();
        if (!CollectionUtils.isEmpty(aggList) && aggList.get(0).getName().equals("statistics_assets")){
            buckets =((ParsedStringTerms) aggList.get(0)).getBuckets();
        }
        for (int i = 0; i < buckets.size(); i++) {
            List<Aggregation> assetsAggList =((ParsedStringTerms.ParsedBucket) buckets.get(i)).getAggregations().asList();
            ParsedSum sum = (ParsedSum)assetsAggList.get(0);
            double assetsValueDouble = sum.getValue();
            //总资产科学计数法转字符串
            BigDecimal bd = new BigDecimal(String.valueOf(assetsValueDouble));
            String assetsValue = bd.toPlainString();
            String oneAccountNo = ((ParsedStringTerms.ParsedBucket) buckets.get(i)).getKeyAsString();
            map.put(oneAccountNo,assetsValue);
        }

你可能感兴趣的:(elasticsearch,elasticsearch教程,elasticsearch学习)