a)NameNode
b)Jobtracker
c)Datanode
d)secondaryNameNode
e)tasktracker
a)3 份
b)2 份
c)1 份
d)不确定
a)SecondaryNameNode
b)DataNode
c)TaskTracker
d)Jobtracker
(此题分析:
hadoop的集群是基于master/slave模式,namenode和jobtracker属于master,datanode和tasktracker属于slave,master只有一个,而slave有多个SecondaryNameNode内存需求和NameNode在一个数量级上,所以通常secondary NameNode(运行在单独的物理机器上)和NameNode运行在不同的机器上。
JobTracker和TaskTracker
JobTracker 对应于 NameNode
TaskTracker 对应于 DataNode
DataNode 和NameNode 是针对数据存放来而言的
JobTracker和TaskTracker是对于MapReduce执行而言的
mapreduce中几个主要概念,mapreduce整体上可以分为这么几条执行线索:jobclient,JobTracker与TaskTracker。
1、JobClient会在用户端通过JobClient类将应用已经配置参数打包成jar文件存储到hdfs,并把路径提交到Jobtracker,然后由JobTracker创建每一个Task(即MapTask和ReduceTask)并将它们分发到各个TaskTracker服务中去执行。
2、JobTracker是一个master服务,软件启动之后JobTracker接收Job,负责调度Job的每一个子任务task运行于TaskTracker上,并监控它们,如果发现有失败的task就重新运行它。一般情况应该把JobTracker部署在单独的机器上。
3、TaskTracker是运行在多个节点上的slaver服务。TaskTracker主动与JobTracker通信,接收作业,并负责直接执行每一个任务。TaskTracker都需要运行在HDFS的DataNode上。)
a)Martin Fowler
b)Kent Beck
c)Doug cutting
a)32MB
b)64MB
c)128MB
(因为版本更换较快,这里答案只供参考,1.x版本的是64M,2.x版本的是128M)
a)CPU
b)网络
c)磁盘IO
d)内存
(该题解析:首先集群的目的是为了节省成本,用廉价的pc机,取代小型机及大型机。小型机和大型机有什么特点?
1.cpu处理能力强
2.内存够大
所以集群的瓶颈不可能是a和d
3.网络是一种稀缺资源,但是并不是瓶颈。
4.由于大数据面临海量数据,读写数据都需要io,然后还要冗余数据,hadoop一般备3份数据,所以IO就会打折扣。)
a)它是 NameNode 的热备
b)它对内存没有要求
c)它的目的是帮助 NameNode 合并编辑日志,减少 NameNode 启动时间
d)SecondaryNameNode 应与 NameNode 部署到一个节点。
a)NTFS
b)FAT32
C)GFS(也是分布式文件系统,谷歌自己的分布式文件系统)
D)EXT3
a)Puppet
b)Pdsh
c)Cloudera Manager
d)Zookeeper
a)如果一个机架出问题,不会影响数据读写
b)写入数据的时候会写到不同机架的 DataNode 中
c)MapReduce 会根据机架获取离自己比较近的网络数据
a)数据经过 NameNode 传递给 DataNode
b)Client 端将文件切分为 Block,依次上传
c)Client 只上传数据到一台 DataNode,然后由 NameNode 负责 Block 复制工作
(该题分析:Client向NameNode发起文件写入的请求。
NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。
Client将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块中。)
a)单机版
b)伪分布式
c)分布式
a)Cloudera manager
b)Tarball
c)Yum
d)Rpm
分析:此题的目的是考Ganglia的了解。严格意义上来讲是正确。ganglia作为一款最常用的Linux环境中的监控软件,它擅长的的是从节点中按照用户的需求以较低的代价采集数据。但是ganglia在预警以及发生事件后通知用户上并不擅长。最新的ganglia已经有了部分这方面的功能。但是更擅长做警告的还有Nagios。Nagios,就是一款精于预警、通知的软件。通过将Ganglia和Nagios组合起来,把Ganglia采集的数据作为Nagios的数据源,然后利用Nagios来发送预警通知,可以完美的实现一整套监控管理的系统。
分析:它是可以被修改的Hadoop的基础配置文件是hadoop-default.xml,默认建立一个Job的时候会建立Job的Config,Config首先读入hadoop-default.xml的配置,然后再读入hadoop-site.xml的配置(这个文件初始的时候配置为空),hadoop-site.xml中主要配置需要覆盖的hadoop-default.xml的系统级配置。
分析:Nagios是集群监控工具,而且是云计算三大利器之一
分析:SecondaryNameNode是帮助恢复,而不是替代,如何恢复,可以查看
分析:第一套付费产品是ClouderaEnterpris,ClouderaEnterprise在美国加州举行的 Hadoop 大会 (Hadoop Summit) 上公开,以若干私有管理、监控、运作工具加强 Hadoop 的功能。收费采取合约订购方式,价格随用的 Hadoop 叢集大小变动。
分析:hadoop是用R语言开发的,MapReduce是一个框架,可以理解是一种思想,可以使用其他语言开发。
分析:lucene是支持随机读写的,而hdfs只支持随机读。但是HBase可以来补救。HBase提供随机读写,来解决Hadoop不能处理的问题。HBase自底层设计开始即聚焦于各种可伸缩性问题:表可以很“高”,有数十亿个数据行;也可以很“宽”,有数百万个列;水平分区并在上千个普通商用机节点上自动复制。表的模式是物理存储的直接反映,使系统有可能提高高效的数据结构的序列化、存储和检索。
此题分析:NameNode 不需要从磁盘读取 metadata,所有数据都在内存中,硬盘上的只是序列化的结果,只有每次 namenode 启动的时候才会读取。
1)文件写入
Client向NameNode发起文件写入的请求。
NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。
Client将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块中。
2)文件读取
Client向NameNode发起文件读取的请求。
分析:DataNode是文件存储的基本单元,它将Block存储在本地文件系统中,保存了Block的Meta-data,同时周期性地将所有存在的Block信息发送给NameNode。NameNode返回文件存储的DataNode的信息。Client读取文件信息。
这个有分歧:具体正在找这方面的有利资料。下面提供资料可参考。
首先明确一下概念:
(1)长连接
Client方与Server方先建立通讯连接,连接建立后不断开,然后再进行报文发送和接收。这种方式下由于通讯连接一直存在,此种方式常用于点对点通讯。
(2)短连接
Client方与Server每进行一次报文收发交易时才进行通讯连接,交易完毕后立即断开连接。此种方式常用于一点对多点通讯,比如多个Client连接一个Server.
hadoop只能阻止好人犯错,但是不能阻止坏人干坏事
分析:一旦Slave节点宕机,数据恢复是一个难题
查看存活的datanode节点信息。
分析:首先明白什么是RAID,可以参考百科磁盘阵列。这句话错误的地方在于太绝对,具体情况具体分析。题目不是重点,知识才是最重要的。因为hadoop本身就具有冗余能力,所以如果不是很严格不需要都配备RAID。具体参考第二题。
分析:首先我们知道什么是map 槽,map 槽->map slot ,map slot 只是一个逻辑值 ( org.apache.hadoop.mapred.TaskTracker.TaskLauncher.numFreeSlots ),而不是对应着一个线程或者进程
输入分片(InputSplit):在进行map计算之前,mapreduce会根据输入文件计算输入分片(inputsplit),每个输入分片(input split)针对一个map任务,输入分片(input split)存储的并非数据本身,而是一个分片长度和一个记录数据的位置的数组。
在我们没有设置分片的范围的时候,分片大小是由block块大小决定的,和它的大小一样。比如把一个258MB的文件上传到HDFS上,假设block块大小是128MB,那么它就会被分成三个block块,与之对应产生三个split,所以最终会产生三个map task。我又发现了另一个问题,第三个block块里存的文件大小只有2MB,而它的block块大小是128MB,那它实际占用Linux file system的多大空间?
答案是实际的文件大小,而非一个块的大小。
http://blog.csdn.net/dr_guo/article/details/51150278
hadoop为各个守护进程(namenode,secondarynamenode,jobtracker,datanode,tasktracker)统一分配的内存在hadoop-env.sh中设置,参数为HADOOP_HEAPSIZE,默认为1000M。
分析:
首先明白介绍,什么ClusterID
ClusterID
添加了一个新的标识符ClusterID用于标识集群中所有的节点。当格式化一个Namenode,需要提供这个标识符或者自动生成。这个ID可以被用来格式化加入集群的其他Namenode。