pd = fitdist(x,distname)
对数据进行概率分布对象拟合/Fit probability distribution object to data
注意只限于一维
x: N*1
同ksdensity()
注意:同样限于一维
多维kde
kde toolbox,且需GCC
解决
说明文档页
bw选择方法
MISE准则
MISE准则 matlab自写code
wikipedia page中详细(见下)
n-dimensional data
4. \color{blue}{4.} 4.
1-dimensional data: kernel dis方式
SixMPG = [13;15;23;29;32;34];
figure
histogram(SixMPG)
%kde拟合得到kernel distribution
pd_kernel = fitdist(data,'Kernel','BandWidth',4);
%or
pd_kernel = fitdist(x,'Kernel','Kernel','epanechnikov')
%Define the x values and compute the pdf of each distribution.
x = 50:1:250;
pdf_kernel = pdf(pd_kernel,x);
%Plot the pdf of each distribution.
plot(x, pdf_kernel, 'Color','b','LineWidth',2);
legend('Kernel Dis')
%附录:Kernel- Kernel smoother type
% normal, box, triangle, epanechnikov
1-dimensional data:ksdensity方式
SixMPG = [13 5 3;15 8 5;12 5 6];
x=[1 6;3 8;3 10;2 8];
x1=[11 2;7 3;1 8;9 8];
x=[1 6 9];
[f,xi] = ksdensity(SixMPG,x,'Bandwidth',4);
[f_1,xi_1,bw_1] = ksdensity(SixMPG);
[f_2,xi_2,bw_2] = ksdensity(SixMPG,x1);
5. \color{red}{5.} 5.
adaptive Kernel Density Estimator for High Dimensions 直接.m函数使用,无需按照mex这些鬼
记录一些快速回顾使用方式
%说明:grid:带进去compute pdf的points; Example中为了plot,所以grid费了一定功夫
%要求:data:Nd grid:Md
%pdf=akde(data,grid); % run adaptive kde
6 老 师 分 享 \color{red}{6\ \ 老师分享} 6 老师分享
可多维kde