转载自这篇文章:博客
请务必先看此文章: 【Python】Matplotlib局部放大图画法这篇文章已经非常详细,但是没有数据,所以自己生成了一些数据,以及对部分代码进行了函数封装,以便于二次使用。import matplotlib.pyplot as pltfrom matplotlib.patches importConnectionPatchimport numpy as npdef zone_and_linke
Eloik · 2021-01-31 22:44:29
请务必先看此文章: 【Python】Matplotlib局部放大图画法
这篇文章已经非常详细,但是没有数据,所以自己生成了一些数据,以及对部分代码进行了函数封装,以便于二次使用。
import matplotlib.pyplot as plt
from matplotlib.patches import ConnectionPatch
import numpy as np
def zone_and_linked(ax,axins,zone_left,zone_right,x,y,linked='bottom',
x_ratio=0.05,y_ratio=0.05):
"""缩放内嵌图形,并且进行连线
ax: 调用plt.subplots返回的画布。例如: fig,ax = plt.subplots(1,1)
axins: 内嵌图的画布。 例如 axins = ax.inset_axes((0.4,0.1,0.4,0.3))
zone_left: 要放大区域的横坐标左端点
zone_right: 要放大区域的横坐标右端点
x: X轴标签
y: 列表,所有y值
linked: 进行连线的位置,{'bottom','top','left','right'}
x_ratio: X轴缩放比例
y_ratio: Y轴缩放比例
"""
xlim_left = x[zone_left]-(x[zone_right]-x[zone_left])*x_ratio
xlim_right = x[zone_right]+(x[zone_right]-x[zone_left])*x_ratio
y_data = np.hstack([yi[zone_left:zone_right] for yi in y])
ylim_bottom = np.min(y_data)-(np.max(y_data)-np.min(y_data))*y_ratio
ylim_top = np.max(y_data)+(np.max(y_data)-np.min(y_data))*y_ratio
axins.set_xlim(xlim_left, xlim_right)
axins.set_ylim(ylim_bottom, ylim_top)
ax.plot([xlim_left,xlim_right,xlim_right,xlim_left,xlim_left],
[ylim_bottom,ylim_bottom,ylim_top,ylim_top,ylim_bottom],"black")
if linked == 'bottom':
xyA_1, xyB_1 = (xlim_left,ylim_top), (xlim_left,ylim_bottom)
xyA_2, xyB_2 = (xlim_right,ylim_top), (xlim_right,ylim_bottom)
elif linked == 'top':
xyA_1, xyB_1 = (xlim_left,ylim_bottom), (xlim_left,ylim_top)
xyA_2, xyB_2 = (xlim_right,ylim_bottom), (xlim_right,ylim_top)
elif linked == 'left':
xyA_1, xyB_1 = (xlim_right,ylim_top), (xlim_left,ylim_top)
xyA_2, xyB_2 = (xlim_right,ylim_bottom), (xlim_left,ylim_bottom)
elif linked == 'right':
xyA_1, xyB_1 = (xlim_left,ylim_top), (xlim_right,ylim_top)
xyA_2, xyB_2 = (xlim_left,ylim_bottom), (xlim_right,ylim_bottom)
con = ConnectionPatch(xyA=xyA_1,xyB=xyB_1,coordsA="data",
coordsB="data",axesA=axins,axesB=ax)
axins.add_artist(con)
con = ConnectionPatch(xyA=xyA_2,xyB=xyB_2,coordsA="data",
coordsB="data",axesA=axins,axesB=ax)
axins.add_artist(con)
# x坐标
x = np.arange(1,1001)
# 生成y轴数据,并添加随机波动
y1 = np.log(x)
indexs = np.random.randint(0,1000,800)
for index in indexs:
y1[index] += np.random.rand() - 0.5
y2 = np.log(x)
indexs = np.random.randint(0,1000,800)
for index in indexs:
y2[index] += np.random.rand() - 0.5
y3 = np.log(x)
indexs = np.random.randint(0,1000,800)
for index in indexs:
y3[index] += np.random.rand() - 0.5
# 绘制主图
fig, ax = plt.subplots(1,1,figsize=(12,7))
ax.plot(x,y1,color='#f0bc94',label='trick-1',alpha=0.7)
ax.plot(x,y2,color='#7fe2b3',label='trick-2',alpha=0.7)
ax.plot(x,y3,color='#cba0e6',label='trick-3',alpha=0.7)
ax.legend(loc='right')
# plt.show()
# 绘制缩放图
axins = ax.inset_axes((0.4, 0.1, 0.4, 0.3))
# 在缩放图中也绘制主图所有内容,然后根据限制横纵坐标来达成局部显示的目的
axins.plot(x,y1,color='#f0bc94',label='trick-1',alpha=0.7)
axins.plot(x,y2,color='#7fe2b3',label='trick-2',alpha=0.7)
axins.plot(x,y3,color='#cba0e6',label='trick-3',alpha=0.7)
# 局部显示并且进行连线
zone_and_linked(ax, axins, 100, 150, x , [y1,y2,y3], 'right')
plt.show()
# 绘制缩放图
axins = ax.inset_axes((0.4, 0.1, 0.4, 0.3))
# 在缩放图中也绘制主图所有内容,然后根据限制横纵坐标来达成局部显示的目的
axins.plot(x,y1,color='#f0bc94',label='trick-1',alpha=0.7)
axins.plot(x,y2,color='#7fe2b3',label='trick-2',alpha=0.7)
axins.plot(x,y3,color='#cba0e6',label='trick-3',alpha=0.7)
# 局部显示并且进行连线
zone_and_linked(ax, axins, 700, 760, x , [y1,y2,y3], 'bottom')
plt.show()