每一个不曾起舞的日子都是对生命的辜负
C++11简介
列表初始化
变量类型推导
在2003年C++标准委员会曾经提交了一份技术勘误表(简称TC1),使得C++03这个名字已经取代了C++98称为C++11之前的最新C++标准名称。不过由于C++03(TC1)主要是对C++98标准中的漏洞进行修复,语言的核心部分则没有改动,因此人们习惯性的把两个标准合并称为C++98/03标准。
从C++0x到C++11,C++标准10年磨一剑,第二个真正意义上的标准珊珊来迟。相比于C++98/03,C++11则带来了数量可观的变化,其中包含了约140个新特性,以及对C++03标准中约600个缺陷的修正,这使得C++11更像是从C++98/03中孕育出的一种新语言。相比较而言,C++11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更强大,而且能提升程序员的开发效率,公司实际项目开发中也用得比较多,所以我们要作为一个重点去学习。C++11增加的语法特性非常篇幅非常多,我们这里没办法一 一讲解,所以本节主要讲解实际中比较实用的语法。
https://en.cppreference.com/w/cpp/11
小故事:
1998年是C++标准委员会成立的第一年,本来计划以后每5年视实际需要更新一次标准,C++国际标准委员会在研究C++ 03的下一个版本的时候,一开始计划是2007年发布,所以最初这个标准叫C++ 07。但是到06年的时候,官方觉得2007年肯定完不成C++ 07,而且官方觉得2008年可能也
完不成。最后干脆叫C++ 0x。x的意思是不知道到底能在07还是08还是09年完成。结果2010年的时候也没完成,最后在2011年终于完成了C++标准。所以最终定名为C++11。
在C++98中,标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定。比如:
struct Point
{
int _x;
int _y;
};
int main()
{
int array1[] = { 1, 2, 3, 4, 5 };
int array2[5] = { 0 };
Point p = { 1, 2 };
return 0;
}
C++11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自定义的类型,使用初始化列表时,可添加等号(=),也可不添加。
#define _CRT_SECURE_NO_WARNINGS 1
#include
using namespace std;
struct Point
{
int _x;
int _y;
};
class Date
{
public:
Date(int year, int month, int day)
:_year(year)
, _month(month)
, _day(day)
{
cout << "Date(int year, int month, int day)" << endl;
}
private:
int _year;
int _month;
int _day;
};
int main()
{
//C++98
Point p1 = { 1, 2 };
int array1[] = { 1, 2, 3, 4, 5 };
int x1 = 1;
int* p3 = new int[10];//c++98不支持new时初始化
Date d1(1, 3, 2);
Date d2 = { 1,3,2 };
//下面都是C++11
Point p2{ 1, 2 };
int array2[]{ 1, 2, 3, 4, 5 };
//建议不要这么用,能看懂就可以
int x2 = { 1 };
int x3{ 1 };
int* p4 = new int[10]{ 1, 2,3,4 };//c++11支持这样初始化
Point* p5 = new Point[2]{ {1, 1}, {2, 2} };
Date d3{ 1,3,2 };
}
对于Date类型,c++11的方式同样调用构造函数。
std::initializer_list的介绍文档:http://www.cplusplus.com/reference/initializer_list/initializer_list/
std::initializer_list是什么类型:
int main()
{
// the type of il is an initializer_list
auto il = { 10, 20, 30 };
cout << typeid(il).name() << endl;
return 0;
}
可以看出,std::initializer_list是作为常量区的一个封装的类型,通过查阅文档,其也有迭代器,可以将常量区的元素一一遍历。
std::initializer_list的使用场景:
std::initializer_list一般是作为构造函数的参数,C++11对STL中的不少容器就增加std::initializer_list作为参数的构造函数,这样初始化容器对象就更方便了。也可以作为operator=的参数,这样就可以用大括号赋值。因此我们就知道了为什么vector类的空间是如何初始化的,vector的构造函数就存在std::initializer_list的参数。而开辟的空间就是根据std::initializer_list的size()大小开辟的。
那再来回顾一下当初模拟实现的vector,由于我们并没有设置std::initializer_list的构造,因此采用大括号进行初始化是错误的,所以我们可以多重载一个由std::initializer_list参数的构造函数
vector(initializer_list<T> il)
:_start(nullptr)
, _finish(nullptr)
, _endofstorage(nullptr)
{
reserve(il.size());
typename initializer_list<T>::iterator it = il.begin();
while (it != il.end())
{
push_back(*it);
++it;
}
}
这样就可以用这样的初始化了:
void test_vector11()
{
vector<int> v{ 1, 2, 3, 4, 5 };
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
}
当然,不仅仅vector,list也是如此。
因此我们对于以后的初始化就可以这样了:
vector<Date> v3 = { {1, 1, 1}, {2, 2, 2}, {3, 3, 3} };
map<string, string> dict = { {"字符串", "string"}, {"排序", "sort"} };
直到这里,才可以看出C++11中{}的意义,对于上面int类型的{}属实是有些鸡肋了。
c++11提供了多种简化声明的方式,尤其是在使用模板时。
在C++98中auto是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局部的变量默认就是自动存储类型,所以auto就没什么价值了。C++11中废弃auto原来的用法,将其用于实现自动类型腿断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初始化值的类型。
实际上在C++初窥门径中已经学习过。
int main()
{
int i = 10;
auto p = &i;
auto pf = strcpy;
cout << typeid(p).name() << endl;
cout << typeid(pf).name() << endl;
return 0;
}
关键字decltype将变量的类型声明为表达式指定的类型。
// decltype的一些使用使用场景
template<class T1, class T2>
void F(T1 t1, T2 t2)
{
decltype(t1 * t2) ret;
cout << typeid(ret).name() << endl;
}
int main()
{
const int x = 1;
double y = 2.2;
decltype(x * y) ret; // ret的类型是double
decltype(&x) p; //p的类型是int*
cout << typeid(ret).name() << endl;
cout << typeid(p).name() << endl;
F(1, 'a');
return 0;
}
由于C++中NULL被定义成字面量0,这样就可能回带来一些问题,因为0既能指针常量,又能表示整形常量。所以出于清晰和安全的角度考虑,C++11中新增了nullptr,用于表示空指针。
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif
除了这些之外,C++11还有许多其他特性,比如之前讲解到的:范围for循环、array、unordered系列、final与override;当然这些都是属于简单的语法知识,后续还有很多C++11中重要的特性:右值引用、智能指针、lambda表达式、包装器、线程库、可变参数模板……。这些在后续都会一一介绍。