- 零基础数据结构与算法—— 第三章:高级数据结构-总结
qqxhb
零基础数据结构与算法小学生编程算法数据结构算法树堆哈希表图
3.1树(上)3.1树(下)3.2堆(Heap)3.3哈希表(HashTable)3.4图(Graph)3.5高级树结构3.6本章小结在本章中,我们深入学习了几种重要的高级数据结构,这些数据结构在解决复杂问题时具有强大的能力。让我们回顾一下本章的主要内容:1.堆(Heap)堆是一种特殊的完全二叉树,具有堆序性质。我们学习了:最大堆和最小堆的概念和性质堆的基本操作(插入、删除堆顶、获取堆顶、构建堆)
- 推客系统全栈开发指南:从架构设计到商业化落地
ywyy6798
系统小程序分销系统短剧系统海外短剧系统推客系统推客小程序
一、推客系统概述推客系统(TuiKeSystem)是一种结合社交网络与内容分发的创新型平台,旨在通过用户间的相互推荐机制实现内容的高效传播。这类系统通常包含用户关系管理、内容发布、智能推荐、数据分析等核心模块,广泛应用于电商导购、知识分享、新闻资讯等领域。推客系统的核心价值在于:利用社交关系链实现内容病毒式传播通过激励机制提升用户参与度基于用户行为数据优化推荐算法构建内容生产者与消费者的良性互动生
- 推客系统开发:从0到1构建高效社交化推荐引擎
wx_ywyy6798
推客系统分销系统海外短剧系统推客小程序推客系统开发推客小程序开发推客分销系统
在信息爆炸的时代,如何让用户快速获取感兴趣的内容?推客系统(推荐引擎)成为解决这一问题的核心方案。无论是电商、内容平台还是社交应用,精准的推荐算法都能显著提升用户粘性和转化率。本文将带您了解推客系统的核心模块与开发要点,助您快速构建高效的推荐体系。一、推客系统的核心价值个性化体验:基于用户行为数据(浏览、点赞、收藏等)生成定制化推荐。流量高效分发:解决“信息过载”问题,提升内容/商品的曝光率。商业
- 202505架构师论文《论静态负载均衡策略设计和应用》
文琪小站
系统架构师软考论文负载均衡运维软考论文
软件架构师论文范文系列摘要在当今高度依赖信息技术的时代,构建高性能、高可用的分布式系统已成为必然趋势。负载均衡作为分布式系统中的关键技术,旨在将请求或数据有效地分发到多个处理单元,以优化资源利用率、提升系统吞吐量并确保服务的稳定运行。本文深入探讨了静态负载均衡策略的设计原理、技术特点及其在实际项目中的应用。首先,概述了负载均衡的整体概念及静态策略的分类,重点介绍了基于哈希、轮询和权重等静态算法的实
- 机器学习18-强化学习RLHF
坐吃山猪
机器学习机器学习人工智能
机器学习18-强化学习RLHF1-什么是RLHFRLHF(ReinforcementLearningfromHumanFeedback)即基于人类反馈的强化学习算法,以下是详细介绍:基本原理RLHF是一种结合了强化学习和人类反馈的机器学习方法。传统的强化学习通常依赖于预定义的奖励函数来指导智能体的学习,而RLHF则通过引入人类的反馈来替代或补充传统的奖励函数。在训练过程中,人类会对智能体的行为或输
- 机器学习19-Transformer和AlexNet思考
坐吃山猪
机器学习机器学习transformer人工智能
Transformer和AlexNet思考关于Transformer和AlexNet发展的一些思考1-核心知识点Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?AlexNet的主要核心思路是什么,为什么表现那么好?现在有什么比AlexNet更优秀的算法2-思路整理1-Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?Word2Vec的作用Word2
- 机器学习21-线性网络思考
坐吃山猪
机器学习机器学习人工智能线性网络
机器学习21-线性网络思考针对线性网络的发展问题,进行补充学习1-核心知识点1-传统机器学习针对线性分类算法求解的方式有哪些?请详细列举不同的算法对应的损失函数和计算思路在传统机器学习中,线性分类算法是一种非常重要的方法,用于将数据划分为不同的类别。以下是几种常见的线性分类算法,包括它们的损失函数和计算思路:1.感知机(Perceptron)损失函数感知机的损失函数是基于误分类点的,其目标是最小化
- 巧用云平台API实现开源模型免费调用的实战教程
herosunly
AIGC人工智能大模型API实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法工程师一职,获得CSDN博客之星第一名,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得多项AI顶级比赛的Top名次,其中包括阿里云、科大讯飞比赛第一名,CCF、开放原子比赛二等奖。在技术创新领域拥有多项授权发明。曾辅导多位非科班出身的同学成功进入算法行业就业
- 搜索之BFS
Luther coder
宽度优先c++
目录一.BFS简介二.BFS主要应用和实现三.典型例题(1)P1443马的遍历-洛谷(2)P8693[蓝桥杯2019国AC]大胖子走迷宫-洛谷四.总结一.BFS简介BFS(图论):广度优先搜索,是一种用于遍历或搜索树或图的算法。所谓广度优先,就是说按照圈层搜索。二.BFS主要应用和实现在搜索算法中,该BFS常常指利用队列实现广度优先搜索,从而寻找最短距离。与图论中的BFS算法有一定相似之处,但并不
- 数据结构与算法:贪心(二)
前言要加快速度啊!!一、最短无序连续子数组classSolution{public:intfindUnsortedSubarray(vector&nums){intn=nums.size();intMax=-1e9;intright=-1;//最右不符合的位置for(inti=0;inums[i])//遇到不符合递增规律的数{right=i;}Max=max(Max,nums[i]);}intMi
- 基于STM32F103C8T6的超声波测距开发详解:从接线到精确测量的完整指南
快撑死的鱼
硬件算法实践stm32嵌入式硬件单片机
基于STM32F103C8T6的超声波测距开发详解:从接线到精确测量的完整指南引言超声波测距技术是一种基于超声波的传播时间来测量目标物体与传感器之间距离的技术。由于其测量精度高、成本低、易于实现,广泛应用于机器人避障、自动停车、液位测量等领域。STM32F103C8T6是一款基于ARMCortex-M3内核的高性能微控制器,凭借其丰富的外设和强大的处理能力,成为嵌入式开发中常用的选择。本文将通过一
- Golang路由性能优化:提升Web应用响应速度
Golang编程笔记
Golang编程笔记Golang开发实战golang性能优化前端ai
Golang路由性能优化:提升Web应用响应速度关键词:Golang路由、性能优化、RadixTree、Web应用响应、路由匹配算法摘要:在Web应用开发中,路由是处理请求的"第一站"。路由性能直接影响用户体验——慢0.1秒可能流失10%的用户!本文以Golang为背景,从路由匹配的底层原理出发,结合生活案例、代码实战和性能测试,带你一步一步掌握路由优化的核心技巧。无论是刚接触Go的新手,还是想突
- 【雕爷学编程】MicroPython手册之 ESP32-CAM 机器人目标跟踪
驴友花雕
机器人目标跟踪人工智能嵌入式硬件pythonMicroPythonESP32-CAM
MicroPython是为了在嵌入式系统中运行Python3编程语言而设计的轻量级版本解释器。与常规Python相比,MicroPython解释器体积小(仅100KB左右),通过编译成二进制Executable文件运行,执行效率较高。它使用了轻量级的垃圾回收机制并移除了大部分Python标准库,以适应资源限制的微控制器。MicroPython主要特点包括:1、语法和功能与标准Python兼容,易学
- 现代 C++ 容器深度解析及实践
mxpan
c++c++开发语言
一、线性容器:std::array与std::forward_list1.std::array:固定大小的高效容器在传统C++中,数组与vector的抉择常让人纠结:数组缺乏安全检查,vector存在动态扩容开销。C++11引入的std::array完美平衡了两者优势:特性解析:编译期确定大小,内存连续分配,访问效率与C数组一致;封装了迭代器、size()、empty()等标准接口,兼容STL算法
- python实现多元线性回归算法 (附完整源码)
源代码大师
python算法完整教程算法python线性回归
python实现多元线性回归算法1.使用正规方程实现多元线性回归代码说明运行结果示例2.使用梯度下降法实现多元线性回归代码说明运行结果示例进一步优化与注意事项下面是使用Python从头实现多元线性回归算法的完整源码。这个实现利用了numpy进行矩阵运算,并展示了如何训练模型、进行预测以及评估模型性能。为了更全面,代码中还包含了一个使用梯度下降法(GradientDescent)优化参数的实现。多元
- YOLO学习笔记 | 从YOLOv5到YOLOv11:技术演进与核心改进
北斗猿
YOLO学习从零到1YOLO目标检测算法python计算机视觉
从YOLOv5到YOLOv11:技术演进与核心改进深度解析一、YOLO系列发展概述YOLO(YouOnlyLookOnce)目标检测算法自2016年诞生以来,凭借其"单次检测"的独特理念和卓越的实时性能,持续引领着计算机视觉领域的技术革新。从JosephRedmon的初代YOLO到AlexeyBochkovskiy的YOLOv4,再到Ultralytics团队的YOLOv5及后续系列,这一算法家族
- 贪心算法 greedy algorithm
yuebo_zhao
算法c++数据结构
贪心算法greedyalgorithm」是一种常见的解决优化问题的算法,其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决策,以期获得全局最优解。贪心算法简洁且高效,在许多实际问题中有着广泛的应用。贪心算法和动态规划都常用于解决优化问题。它们之间存在一些相似之处,比如都依赖最优子结构性质,但工作原理不同。动态规划会根据之前阶段的所有决策来考虑当前决策,并使用过去
- 2021.10.4 比赛题整理
伍叁壹_
比赛整理题解c++
2021.10.42021CSPJ初二初一冲刺七链接集合总结炸了炸了。。T3半天做了个寂寞。对算法不熟悉。T1:简单思维题;T2:KMPnxt数组的运用;T3:二分+图,代码实现可用并查集;T4:四维树形dp。T1题意设a0←1a_0\gets1a0←1,an←ai+aja_n\getsa_i+a_jan←ai+aj(i,j在[0,n−1)[0,n-1)[0,n−1)范围内随机)。求对于给定的nn
- 计算三维空间中AOA定位的 CRLB(Cramér–Rao 下界,克拉美罗下界)公式与MATLAB例程
MATLAB卡尔曼
MATLAB定位程序与详解matlab机器学习定位导航
文章目录适用条件✅符号定义✅CRLB计算基本框架1.方向向量定义2.雅可比矩阵(Jacobian)3.Fisher信息矩阵(FIM)4.Cramér–RaoLowerBound✅例程中文注释版`aoa_crlb_3d_demo.m`✅运行输出结果在三维空间中,利用AOA(AngleofArrival,到达角度)测量信息进行目标定位时,CRLB(Cramér–RaoLowerBound)表示该测量系
- 应用程序性能优化:从操作系统到算法的全方位攻略
Spring_java_gg
性能优化性能优化算法
作为一名应用程序性能优化专家,我将带你踏上一段生动有趣的旅程,探索如何从操作系统、编程语言、数据库和算法四个方面提升你的应用性能。准备好了吗?让我们开始吧!1.操作系统层面的优化想象一下,操作系统就像是一个大型的调度中心,负责管理所有的资源和任务。为了让这个调度中心更加高效,我们可以采取以下措施:合理配置内核参数:调整操作系统的内核参数,如文件描述符限制、网络缓冲区大小等,可以显著提高应用的响应速
- Python实例题:简单的聊天机器人
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目简单的聊天机器人要求:实现一个基于规则的聊天机器人,支持简单问答和对话。支持以下功能:问候语识别与回应天气查询(模拟)时间/日期查询简单数学计算随机笑话生成添加对话历史记录功能,可随时查看。支持退出对话的指令。解题思路:使用关键词匹配实现简单的问答逻辑。利用Python内置模块处理时间、数学计算等功能。维护对话历史列表存储交
- 贪心算法(GREEDY ALGORITHM)证明实践
m0_72431373
贪心算法算法leetcode
基础概念贪心算法Formal的解释这里就不介绍了,有兴趣的直接去wikipedia上理解。简单地来说,贪心算法就是在某种规律下不断选取局部最优解,从而达到全局最优。《挑战程序设计竞赛》中有一个很直观的解释:一直向前!证明方法既然贪心算法是利用规律选取局部最优解,那么我们选取规律所得出的全局解就不一定是全局最优解。因此,我们需要证明,我们所选这个规律是可以得出一个全局最优解的。注意这里所谓的可以得出
- SIMULINK开发项目实例 1000 例专栏之第663例:基于simulink的SVPWM技术的研究的三相电压源逆变器建模仿真
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏matlabsimulink
目录准备工作步骤详解第一步:创建Simulink项目第二步:选择并添加合适的库组件第三步:构建基本的三相电压源逆变器模型第四步:实现SVPWM算法第五步:仿真与调试第六步:结果分析第七步:优化与改进第八步:导出与部署总结三相电压源逆变器(VoltageSourceInverter,VSI)在电力电子中是将直流电转换为交流电的一种重要设备,广泛应用于电机驱动、不间断电源(UPS)、可再生能源系统等领
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- 构建智能企业知识管理平台:动态知识图谱与语义检索系统
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据知识图谱人工智能ai
构建智能企业知识管理平台:动态知识图谱与语义检索系统关键词:知识管理平台、动态知识图谱、语义检索、知识图谱构建、语义检索算法摘要:本文详细探讨了构建智能企业知识管理平台的核心技术,重点介绍了动态知识图谱和语义检索系统的原理与实现。通过分析知识图谱的构建方法和语义检索算法,结合实际案例,展示了如何利用这些技术提升企业的知识管理水平。文章内容包括背景介绍、核心概念、算法原理、系统架构设计、项目实战以及
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- 巅峰对决,超三十万奖金等你挑战!第十届信也科技杯全球AI算法大赛火热开赛!
中杯可乐多加冰
前沿资讯分享科技人工智能算法计算机视觉机器学习深度学习
信也科技今年跟IJCAI和CIKM这两大全球顶级AI会议合作,这场比赛被全球人工智能顶会CIKM收录为官方赛事单元,获奖选手有机会全球人工智能顶会创造更大的影响力。一、赛事概况随着深度伪造技术的高度发展,人工智能产业走深向实,生成合成技术开始呈现工具化和普及化趋势。在生成合成内容质量显著提升的当下,基于换脸攻击的身份冒用和欺诈事件在全球范围内激增,严重威胁个人隐私和公共数据安全。第十届信也科技杯全
- 大模型 AI智能体Coze知识库从使用到实战详解
非著名架构师
大模型知识文档人工智能Coze知识库
一、Coze知识库核心价值解析1.1知识库技术架构创新Coze知识库采用四层混合架构设计,在2025年大模型应用中展现出独特优势:存储层:支持向量数据库(Qdrant)+图数据库(Neo4j)双引擎处理层:集成PDF/PPT/Excel等23种文件解析器检索层:混合检索算法(BM25+稠密检索+语义路由)应用层:RAG(检索增强生成)优化接口与传统方案相比,查询准确率提升42%,特别擅长处理:专业
- 搬运机器人系列编程:Fanuc M-20iA_20.搬运机器人系统的集成与安装
zhubeibei168
机器人及导航机器人数据挖掘人工智能
20.搬运机器人系统的集成与安装20.1系统集成概述在汽车制造行业中,搬运机器人系统的集成是一个复杂而多步骤的过程,涉及机械、电气、软件等多个方面的专业知识。FanucM-20iA搬运机器人以其高效、精准的特点,在这一领域中得到了广泛应用。本节将详细介绍如何将FanucM-20iA机器人集成到汽车制造生产线中,包括硬件安装、软件配置、系统调试等关键步骤。20.1.1机器人系统集成的重要性机器人系统
- Python设置国内镜像教程
wh3933
python开发语言
####引言Python是一种广泛使用的高级编程语言,用于各种编程任务,从简单的脚本到复杂的机器学习算法。在安装Python包时,通常需要从Python包索引(PyPI)下载。由于网络原因,直接从PyPI下载可能速度较慢,因此,使用国内的镜像源可以显著提高下载速度。本文将详细介绍如何在Python中设置国内镜像。####文章目的本篇文章旨在指导用户如何将Python的包管理工具`pip`的默认源切
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><