目录
1、简介
2、CPU 架构移植
2.1、libcpu抽象层
2.1.1、CPU 架构移植需要实现的接口和变量
2.2、实现全局中断开关
2.2.1、rt_hw_interrupt_disable()函数
2.2.2、rt_hw_interrupt_enable()函数
2.3、实现线程栈初始化
2.4、实现上下文切换
2.4.1、rt_hw_context_switch_to()函数
2.4.2、rt_hw_context_switch()函数
2.4.3、rt_hw_context_switch_interrupt ()函数
2.5、实现时钟节拍
3、BSP移植
3.1、BSP 抽象层
4、Cortex-M 架构移植示例
4.1、中断
4.1.1、中断向量表
4.2、全局中断开关实现
4.2.1、关闭全局中断
4.2.2、打开全局中断
4.3、线程栈初始化实现
4.3.1、寄存器
4.3.2、堆栈指针
4.3.3、rt_hw_stack_init()函数实现
4.3.4、向下生长的栈结构
4.4、上下文切换实现
4.4.1、操作模式和特权级别
4.4.2、线程之间的上下文切换
4.4.3、中断到线程的上下文切换
4.4.4、实现 rt_hw_context_switch_to()函数
4.4.5、实现 rt_hw_context_switch()/ rt_hw_context_switch_interrupt()函数
4.5、实现 PendSV 中断
4.6、实现时钟节拍
4.7、栈切换结构图示
4.7.1、运行第一个线程
4.7.2、线程间切换
内核移植就是指将 RT-Thread 内核在不同的芯片架构、不同的板卡上运行起来,能够具备线程管理和调度,内存管理,线程间同步和通信、定时器管理等功能。移植可分为CPU架构移植和BSP移植两部分:
1)CPU架构移植:此部分不需要用户移植(芯片原厂移植)。
2)BSP移植:官方会提供开发板的BSP,开发时可以参考官方提供开发板的BSP。
在嵌入式领域有多种不同 CPU 架构,例如 Cortex-M、ARM920T、MIPS32、RISC-V 等等。为了使 RT-Thread 能够在不同 CPU 架构的芯片上运行,RT-Thread 提供了一个 libcpu 抽象层来适配不同的 CPU 架构。
1)RT-Thread 的 libcpu 抽象层向上对内核提供统一的接口,包括全局中断的开关,线程栈的初始化,上下文切换等。
2)RT-Thread 的 libcpu 抽象层向下提供了一套统一的 CPU 架构移植接口,这部分接口包含了全局中断开关函数、线程上下文切换函数、时钟节拍的配置和中断函数、Cache 等等内容。
函数和变量 | 描述 |
---|---|
rt_base_t rt_hw_interrupt_disable(void); | 关闭全局中断 |
void rt_hw_interrupt_enable(rt_base_t level); | 打开全局中断 |
rt_uint8_t *rt_hw_stack_init(void *tentry, void *parameter, rt_uint8_t *stack_addr, void *texit); | 线程栈的初始化。内核在线程创建和线程初始化里面会调用这个函数 |
void rt_hw_context_switch_to(rt_uint32_t to); | 没有来源线程的上下文切换。在调度器启动第一个线程的时候调用,以及在signal里面会调用 |
void rt_hw_context_switch(rt_uint32_t from, rt_uint32_t to); | 从 from 线程切换到 to 线程,用于线程和线程之间的切换 |
void rt_hw_context_switch_interrupt(rt_uint32_t from, rt_uint32_t to); | 从 from 线程切换到 to 线程,用于中断里面进行切换的时候使用 |
rt_uint32_t rt_thread_switch_interrupt_flag; | 表示需要在中断里进行切换的标志 |
rt_uint32_t rt_interrupt_from_thread, rt_interrupt_to_thread; | 在线程进行上下文切换时候,用来保存 from 和 to 线程的sp |
无论内核代码还是用户的代码,都可能存在一些变量,需要在多个线程或者中断里面使用,如果没有相应的保护机制,那就可能导致临界区问题。
RT-Thread 里为了解决这个问题,提供了一系列的线程间同步和通信机制来解决。但是这些机制都需要用到 libcpu 里提供的全局中断开关函数。
/* 关闭全局中断 */
rt_base_t rt_hw_interrupt_disable(void);
/* 打开全局中断 */
void rt_hw_interrupt_enable(rt_base_t level);
在 rt_hw_interrupt_disable() 函数里面需要依序完成的功能是:
1)保存当前的全局中断状态,并把状态作为函数的返回值。
2)关闭全局中断。
在 rt_hw_interrupt_enable(rt_base_t level) 里,将变量 level 作为需要恢复的状态,覆盖芯片的全局中断状态。
在动态创建线程和初始化线程的时候,调用栈初始化函数 rt_hw_stack_init(),手动构造一个上下文内容,这个上下文内容将被作为每个线程第一次执行的初始值。
在不同的 CPU 架构里,线程之间的上下文切换和中断到线程的上下文切换,上下文的寄存器部分可能是有差异的,也可能是一样的。
在线程环境下进行切换和在中断环境进行切换是存在差异的。线程环境下,如果调用 rt_hw_context_switch() 函数,那么可以马上进行上下文切换;而在中断环境下,需要等待中断处理函数完成之后才能进行切换。
在中断处理程序里如果触发了线程的调度,调度函数里会调用 rt_hw_context_switch_interrupt() 触发上下文切换。中断处理程序里处理完中断事务之后,中断退出之前,检查 rt_thread_switch_interrupt_flag 变量,如果该变量的值为 1,则根据 rt_interrupt_from_thread 变量和 rt_interrupt_to_thread 变量,完成线程的上下文切换。
没有来源线程,切换到目标线程。在调度器启动第一个线程的时候被调用。
void rt_hw_context_switch_to(rt_ubase_t to, struct rt_thread *to_thread);
在线程环境下,从当前线程切换到目标线程。
在中断环境下,从当前线程切换到目标线程。
有了开关全局中断和上下文切换功能的基础,RTOS 就可以进行线程的创建、运行、调度等功能了。有了时钟节拍支持,RT-Thread 可以实现对相同优先级的线程采用时间片轮转的方式来调度,实现定时器功能,实现 rt_thread_delay() 延时函数等等。
注:libcpu的移植需要完成的工作,就是确保 rt_tick_increase()函数会在时钟节拍的中断里被周期性的调用,调用周期取决于 rtconfig.h 的宏 RT_TICK_PER_SECOND 的值。
相同的CPU架构在实际项目中,不同的板卡上可能使用相同的 CPU 架构,搭载不同的外设资源,完成不同的产品,所以也需要针对板卡做适配工作。
RT-Thread 提供了 BSP 抽象层来适配常见的板卡。如果希望在一个板卡上使用 RT-Thread 内核,除了需要有相应的芯片架构的移植,还需要有针对板卡的移植,也就是实现一个基本的 BSP。主要任务是建立让操作系统运行的基本环境,需要完成的主要工作是:
1)初始化 CPU 内部寄存器,设定 RAM 工作时序。
2)实现时钟驱动及中断控制器驱动,完善中断管理。
3)实现串口和 GPIO 驱动。
4)初始化动态内存堆,实现动态堆内存管理。
中断向量表是所有中断处理程序的入口,如下图所示是 Cortex-M 系列的中断处理过程:把一个函数(用户中断服务程序)同一个虚拟中断向量表中的中断向量联系在一起。当中断向量对应中断发生的时候,被挂接的用户中断服务程序就会被调用执行。
在 Cortex-M 内核上,所有中断都采用中断向量表的方式进行处理,即当一个中断触发时,处理器将直接判定是哪个中断源,然后直接跳转到相应的固定位置进行处理,每个中断服务程序必须排列在一起放在统一的地址上(这个地址必须要设置到 NVIC 的中断向量偏移寄存器中)。中断向量表一般由一个数组定义或在起始代码中给出,如:
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset 处理函数
DCD NMI_Handler ; NMI 处理函数
DCD HardFault_Handler ; Hard Fault 处理函数
DCD MemManage_Handler ; MPU Fault 处理函数
DCD BusFault_Handler ; Bus Fault 处理函数
DCD UsageFault_Handler ; Usage Fault 处理函数
DCD 0 ; 保留
DCD 0 ; 保留
DCD 0 ; 保留
DCD 0 ; 保留
DCD SVC_Handler ; SVCall 处理函数
DCD DebugMon_Handler ; Debug Monitor 处理函数
DCD 0 ; 保留
DCD PendSV_Handler ; PendSV 处理函数
DCD SysTick_Handler ; SysTick 处理函数
… …
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
… …
[WEAK] 标识弱符号。在 [WEAK] 前面的符号(如 NMI_Handler)将被执行弱化处理,如果整个代码在链接时遇到了名称相同的符号,那么代码将使用未被弱化定义的符号,而与弱符号相关的代码将被自动丢弃。
注:向量表存放的第一个元素为栈顶地址!
Cortex-M 为了快速开关中断,实现了 CPS 指令。
CPSID I ;PRIMASK=1, ; 关中断
CPSIE I ;PRIMASK=0, ; 开中断
注:PRIMASK:1 bit寄存器。当该bit置位时,允许NMI和硬件故障异常;所有其他中断和异常都被屏蔽。默认值是0,这意味着没有设置屏蔽。
基于 MDK,在 Cortex-M 内核上实现关闭全局中断,代码如下所示:
;/*
; * rt_base_t rt_hw_interrupt_disable(void);
; */
rt_hw_interrupt_disable PROC ;PROC 伪指令定义函数
EXPORT rt_hw_interrupt_disable ;EXPORT 输出定义的函数,类似于 C 语言 extern
MRS r0, PRIMASK ; 读取 PRIMASK 寄存器的值到 r0 寄存器
CPSID I ; 关闭全局中断
BX LR ; 函数返回
ENDP ;ENDP 函数结束
1)使用 MRS 指令将 PRIMASK 寄存器的值保存到 r0 寄存器里。
2)使用 “CPSID I” 指令关闭全局中断。
3)使用 BX 指令返回(r0 存储的数据就是函数的返回值)。
注:关于寄存器在函数调用的时候和在中断处理程序里是如何管理的,不同的 CPU 架构有不同的约定。在 ARM 官方手册《Procedure Call Standard for the ARM ® Architecture》里可以找到关于 Cortex-M 的更详细的介绍寄存器使用的约定。
基于 MDK,在 Cortex-M 内核上的实现打开全局中断,代码如下所示:
;/*
; * void rt_hw_interrupt_enable(rt_base_t level);
; */
rt_hw_interrupt_enable PROC ; PROC 伪指令定义函数
EXPORT rt_hw_interrupt_enable ; EXPORT 输出定义的函数,类似于 C 语言 extern
MSR PRIMASK, r0 ; 将 r0 寄存器的值写入到 PRIMASK 寄存器
BX LR ; 函数返回
ENDP ; ENDP 函数结束
1)使用 MSR 指令将 r0 的值寄存器写入到 PRIMASK 寄存器,从而恢复之前的中断状态。
2)使用 BX 指令返回
Cortex-M 系列 CPU 的寄存器组里有 R0~R15 共 16 个通用寄存器组和若干特殊功能寄存器。
1)通用寄存器组里的 R13 作为堆栈指针寄存器 (Stack Pointer,SP);R14 作为连接寄存器 (Link Register,LR),用于在调用子程序时,存储返回地址;R15 作为程序计数器 (Program Counter,PC),其中堆栈指针寄存器可以是主堆栈指针(MSP),也可以是进程堆栈指针(PSP)。
2)程序状态字寄存器里保存算术与逻辑标志,例如负数标志,零结果标志,溢出标志等等。
3)中断屏蔽寄存器组控制 Cortex-M 的中断除能。
4)控制寄存器用来定义特权级别和当前使用哪个堆栈指针。
5)如果是具有浮点单元的 Cortex-M4 或者 Cortex-M7,控制寄存器也用来指示浮点单元当前是否在使用,浮点单元包含了 32 个浮点通用寄存器 S0~S31 和特殊 FPSCR 寄存器(Floating point status and control register)。
在 Cortex-M 处理器内核里有两个堆栈指针:
1)一个是主堆栈指针(MSP),是默认的堆栈指针,在运行第一个线程之前和在中断和异常服务程序里使用;
2)另一个是线程堆栈指针(PSP),在线程里使用。在中断和异常服务程序退出时,修改 LR 寄存器的第 2 位的值为 1,线程的 SP 就由 MSP 切换到 PSP。
rt_uint8_t *rt_hw_stack_init(void *tentry,
void *parameter,
rt_uint8_t *stack_addr,
void *texit)
{
struct stack_frame *stack_frame;
rt_uint8_t *stk;
unsigned long i;
/* 对传入的栈指针做对齐处理 */
stk = stack_addr + sizeof(rt_uint32_t);
stk = (rt_uint8_t *)RT_ALIGN_DOWN((rt_uint32_t)stk, 8);
stk -= sizeof(struct stack_frame);
/* 得到上下文的栈帧的指针 */
stack_frame = (struct stack_frame *)stk;
/* 把所有寄存器的默认值设置为 0xdeadbeef */
for (i = 0; i < sizeof(struct stack_frame) / sizeof(rt_uint32_t); i ++)
{
((rt_uint32_t *)stack_frame)[i] = 0xdeadbeef;
}
/* 根据 ARM APCS 调用标准,将第一个参数保存在 r0 寄存器 */
stack_frame->exception_stack_frame.r0 = (unsigned long)parameter;
/* 将剩下的参数寄存器都设置为 0 */
stack_frame->exception_stack_frame.r1 = 0; /* r1 寄存器 */
stack_frame->exception_stack_frame.r2 = 0; /* r2 寄存器 */
stack_frame->exception_stack_frame.r3 = 0; /* r3 寄存器 */
/* 将 IP(Intra-Procedure-call scratch register.) 设置为 0 */
stack_frame->exception_stack_frame.r12 = 0; /* r12 寄存器 */
/* 将线程退出函数的地址保存在 lr 寄存器 */
stack_frame->exception_stack_frame.lr = (unsigned long)texit;
/* 将线程入口函数的地址保存在 pc 寄存器 */
stack_frame->exception_stack_frame.pc = (unsigned long)tentry;
/* 设置 psr 的值为 0x01000000L,表示默认切换过去是 Thumb 模式 */
stack_frame->exception_stack_frame.psr = 0x01000000L;
/* 返回当前线程的栈地址 */
return stk;
}
struct exception_stack_frame
{
rt_uint32_t r0;
rt_uint32_t r1;
rt_uint32_t r2;
rt_uint32_t r3;
rt_uint32_t r12;
rt_uint32_t lr;
rt_uint32_t pc;
rt_uint32_t psr;
};
struct stack_frame
{
/* r4 ~ r11 register */
rt_uint32_t r4;
rt_uint32_t r5;
rt_uint32_t r6;
rt_uint32_t r7;
rt_uint32_t r8;
rt_uint32_t r9;
rt_uint32_t r10;
rt_uint32_t r11;
struct exception_stack_frame exception_stack_frame;
};
注:CPU架构小端,故PSR位于栈顶而非R4!
在Cortex-M 里面上下文切换都是统一使用 PendSV 异常来完成,切换部分并没有差异(线程之间的上下文切换和中断到线程的上下文切换)。
注:PendSV 也称为可悬起的系统调用,它是一种异常,可以像普通的中断一样被挂起,它是专门用来辅助操作系统进行上下文切换的。PendSV 异常会被初始化为最低优先级的异常。每次需要进行上下文切换的时候,会手动触发 PendSV 异常,在 PendSV 异常处理函数中进行上下文切换。
Cortex-M 引入了操作模式和特权级别的概念。
1)如果进入异常或中断处理则进入处理模式,其他情况则为线程模式。
2)Cortex-M 有两个运行级别,分别为特权级和用户级。线程模式可以工作在特权级或者用户级,而处理模式总工作在特权级,可通过 CONTROL 特殊寄存器控制。
特权级 | 用户级 | |
线程模式 | √ | √ |
处理模式 | √ | / |
Cortex-M 的堆栈寄存器 SP 对应两个物理寄存器 MSP 和 PSP,MSP 为主堆栈,PSP 为进程堆栈,处理模式总是使用 MSP 作为堆栈,线程模式可以选择使用 MSP 或 PSP 作为堆栈,同样通过 CONTROL 特殊寄存器控制。
注:复位后,Cortex-M 默认进入线程模式、特权级、使用 MSP 堆栈。
硬件在进入 PendSV 中断之前自动保存了 from 线程的 PSR、PC、LR、R12、R3-R0 寄存器,然后 PendSV 里保存 from 线程的 R11~R4 寄存器,以及恢复 to 线程的 R4~R11 寄存器,最后硬件在退出 PendSV 中断之后,自动恢复 to 线程的 R0~R3、R12、LR、PC、PSR 寄存器。
硬件在进入中断之前自动保存了 from 线程的 PSR、PC、LR、R12、R3-R0 寄存器,然后触发了 PendSV 异常。在 PendSV 异常处理函数里保存 from 线程的 R11~R4 寄存器,以及恢复 to 线程的 R4~R11 寄存器,最后硬件在退出 PendSV 中断之后,自动恢复 to 线程的 R0~R3、R12、PSR、PC、LR 寄存器。
在 Cortex-M3 内核上的 rt_hw_context_switch_to() 实现(基于 MDK),代码如下所示:
;/*
; * void rt_hw_context_switch_to(rt_uint32_t to);
; * r0 --> to
; * this fucntion is used to perform the first thread switch
; */
rt_hw_context_switch_to PROC
EXPORT rt_hw_context_switch_to
; r0 的值是一个指针,该指针指向 to 线程的线程控制块的 SP 成员
; 将 r0 寄存器的值保存到 rt_interrupt_to_thread 变量里
LDR r1, =rt_interrupt_to_thread
STR r0, [r1]
; 设置 from 线程为空,表示不需要从保存 from 的上下文
LDR r1, =rt_interrupt_from_thread
MOV r0, #0x0
STR r0, [r1]
; 设置标志为 1,表示需要切换,这个变量将在 PendSV 异常处理函数里切换的时被清零
LDR r1, =rt_thread_switch_interrupt_flag
MOV r0, #1
STR r0, [r1]
; 设置 PendSV 异常优先级为最低优先级
LDR r0, =NVIC_SYSPRI2
LDR r1, =NVIC_PENDSV_PRI
LDR.W r2, [r0,#0x00] ; read
ORR r1,r1,r2 ; modify
STR r1, [r0] ; write-back
; 触发 PendSV 异常 (将执行 PendSV 异常处理程序)
LDR r0, =NVIC_INT_CTRL
LDR r1, =NVIC_PENDSVSET
STR r1, [r0]
; 将 MSP 设置启动时的值(向量表放的第一个元素是sp)
LDR r0, =SCB_VTOR
LDR r0, [r0]
LDR r0, [r0]
MSR msp, r0
; 使能全局中断和全局异常,使能之后将进入 PendSV 异常处理函数
CPSIE F
CPSIE I
; 不会执行到这里
ENDP
注:此汇编代码会设置 PendSV 异常优先级为最低优先级,并将MSP设置为SCB_VTOR(向量表放的第一个元素是sp)
在 Cortex-M3 内核上的 rt_hw_context_switch() 和 rt_hw_context_switch_interrupt() 实现(基于 MDK),代码如下所示:
;/*
; * void rt_hw_context_switch(rt_uint32_t from, rt_uint32_t to);
; * r0 --> from
; * r1 --> to
; */
rt_hw_context_switch_interrupt
EXPORT rt_hw_context_switch_interrupt
rt_hw_context_switch PROC
EXPORT rt_hw_context_switch
; 检查 rt_thread_switch_interrupt_flag 变量是否为 1
; 如果变量为 1 就跳过更新 from 线程的内容
LDR r2, =rt_thread_switch_interrupt_flag
LDR r3, [r2]
CMP r3, #1
BEQ _reswitch
; 设置 rt_thread_switch_interrupt_flag 变量为 1
MOV r3, #1
STR r3, [r2]
; 从参数 r0 里更新 rt_interrupt_from_thread 变量
LDR r2, =rt_interrupt_from_thread
STR r0, [r2]
_reswitch
; 从参数 r1 里更新 rt_interrupt_to_thread 变量
LDR r2, =rt_interrupt_to_thread
STR r1, [r2]
; 触发 PendSV 异常,将进入 PendSV 异常处理函数里完成上下文切换
LDR r0, =NVIC_INT_CTRL
LDR r1, =NVIC_PENDSVSET
STR r1, [r0]
BX LR
在 Cortex-M3 里,PendSV 中断处理函数是 PendSV_Handler()。在 PendSV_Handler() 里完成线程切换的实际工作,下图是具体的流程图:
; r0 --> switch from thread stack
; r1 --> switch to thread stack
; psr, pc, lr, r12, r3, r2, r1, r0 are pushed into [from] stack
PendSV_Handler PROC
EXPORT PendSV_Handler
; 关闭全局中断
MRS r2, PRIMASK
CPSID I
; 检查 rt_thread_switch_interrupt_flag 变量是否为 0
; 如果为零就跳转到 pendsv_exit
LDR r0, =rt_thread_switch_interrupt_flag
LDR r1, [r0]
CBZ r1, pendsv_exit ; pendsv already handled
; 清零 rt_thread_switch_interrupt_flag 变量
MOV r1, #0x00
STR r1, [r0]
; 检查 rt_thread_switch_interrupt_flag 变量
; 如果为 0,就不进行 from 线程的上下文保存
LDR r0, =rt_interrupt_from_thread
LDR r1, [r0]
CBZ r1, switch_to_thread
; 保存 from 线程的上下文
MRS r1, psp ; 获取 from 线程的栈指针
STMFD r1!, {r4 - r11} ; 将 r4~r11 保存到线程的栈里
LDR r0, [r0]
STR r1, [r0] ; 更新线程的控制块的 SP 指针
switch_to_thread
LDR r1, =rt_interrupt_to_thread
LDR r1, [r1]
LDR r1, [r1] ; 获取 to 线程的栈指针
LDMFD r1!, {r4 - r11} ; 从 to 线程的栈里恢复 to 线程的寄存器值
MSR psp, r1 ; 更新 r1 的值到 psp
pendsv_exit
; 恢复全局中断状态
MSR PRIMASK, r2
; 修改 lr 寄存器的 bit2,确保进程使用 PSP 堆栈指针
ORR lr, lr, #0x04
; 退出中断函数
BX lr
ENDP
注:进入PendSV中断时使用的是MSP,在退出时要切换回PSP。
在 Cortex M 中,实现 SysTick 的中断处理函数即可实现时钟节拍功能。
void SysTick_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
}