- Longformer: The Long-Document Transformer(2020-4-10)
不负韶华ღ
深度学习(NLP)transformer深度学习人工智能
模型介绍目前基于Transformer的预训练模型在各项NLP任务纷纷取得更好的效果,这些成功的部分原因在于Self-Attention机制,它运行模型能够快速便捷地从整个文本序列中捕获重要信息。然而传统的Self-Attention机制的时空复杂度与文本的序列长度呈平方的关系,这在很大程度上限制了模型的输入不能太长,因此需要将过长的文档进行截断传入模型进行处理,例如BERT中能够接受的最大序列长
- Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
蓝婷儿
pythonpython数据分析逻辑回归
✅今日目标回顾整个本周数据分析&建模流程学会训练第二种模型:决策树(DecisionTree)掌握多模型对比评估的方法与实践输出综合对比报告:准确率、精确率、召回率、F1等指标为后续模型调优与扩展打下基础一、本周流程快速回顾步骤内容第1天高级数据操作(索引、透视、变形)第2天缺失值和异常值处理第3天多表合并与连接第4天特征工程(编码、归一化、时间)第5天数据集拆分(训练集/测试集)第6天逻辑回归模
- Docker 容器间通信:Link 与自定义网络
Docker容器间通信:Link与自定义网络关键词:Docker容器通信、容器网络模型、DockerLink、自定义网络、Bridge网络、Overlay网络、网络驱动摘要:本文深入解析Docker容器间通信的两种核心方式——传统Link机制与现代自定义网络方案。通过对比分析两者的技术原理、实现方式、适用场景及最佳实践,帮助读者理解Docker网络架构的演进逻辑。文章从容器网络基础概念出发,详细阐
- Coze智能体开发:什么是提示词及其编写建议
王国平
CozeAIAgent智能体开发人工智能大数据语言模型python开发语言
提示词(Prompt)是AIAgent的核心,它决定了模型生成结果的质量和准确性。提示词不仅影响输出,还决定了模型对输入信息的理解深度。通过科学的提示词设计,开发者能高效引导模型生成符合预期的高质量输出。基础概念提示词提示词(Prompt)是用户在与模型或智能系统互动时输入的指令或文本,用来引导系统生成回应或执行特定任务。它可以是问题、命令或描述性文字,帮助系统理解用户的意图并提供相应的结果。提示
- Coze智能体开发:如何批量生成和处理图片
王国平
CozeAIAgent智能体开发语言模型人工智能开发语言智能体Agent
在绘本制作、图片后期制作等场景中,往往需要使用模型来批量生成和处理图片。扣子提供了多个图像处理类节点,支持图像生成、添加水印、画质优化等多种常见的图片处理方式,你可以在批处理节点中嵌套图像生成等图像处理节点,实现图片的批量操作。本文档以绘本制作工作流为例,演示如何通过批处理节点和图像节点实现图像的批量生成和批量处理。效果演示通过绘本制作工作流,你可以批量生成类似以下风格的图片。搭建过程中你也可以根
- Django5.1(91)—— 如何删除一个 Django 应用
小天的铁蛋儿
djangoPythondjangopython后端
如何删除一个Django应用Django提供了将一组功能组织成名为应用程序的Python包的能力。当需求发生变化时,应用程序可能会变得过时或不再需要。以下步骤将帮助你安全地删除一个应用程序。删除所有与该应用程序相关的引用(导入、外键等)。从相应的models.py文件中删除所有模型。通过运行makemigrations来创建相关的迁移。这一步会生成一个迁移,用于删除已删除模型的表,以及与这些模型相
- 搜索架构中的NLP技术:提升搜索准确性的关键
搜索引擎技术
架构自然语言处理人工智能ai
搜索架构中的NLP技术:提升搜索准确性的关键关键词:搜索架构、NLP技术、查询理解、语义搜索、相关性排序、意图识别、BERT模型摘要:本文将深入探讨现代搜索架构中NLP技术的核心应用,从查询理解到结果排序的全流程,揭示NLP如何提升搜索准确性。我们将通过生动的比喻解释复杂概念,分析关键技术原理,并提供实际代码示例,帮助读者全面理解搜索系统背后的NLP魔法。背景介绍目的和范围本文旨在解析NLP技术在
- 2023年搜索领域的技术认证与职业发展指南
搜索引擎技术
搜索引擎ai
2023年搜索领域的技术认证与职业发展指南关键词搜索领域、技术认证、职业发展、搜索引擎技术、人工智能搜索摘要本指南旨在为搜索领域的从业者和有志于进入该领域的人士提供全面的技术认证与职业发展参考。首先介绍搜索领域的概念基础,包括其历史发展和关键问题。接着阐述相关理论框架,分析不同认证背后的原理。架构设计部分展示搜索系统的组成与交互。实现机制探讨算法复杂度和代码优化。实际应用部分给出实施和部署策略。高
- 探索AI人工智能医疗NLP实体识别系统的架构设计
AI学长带你学AI
人工智能自然语言处理easyuiai
探索AI人工智能医疗NLP实体识别系统的架构设计关键词:人工智能、医疗NLP、实体识别、系统架构、深度学习、自然语言处理、医疗信息化摘要:本文将深入探讨医疗领域NLP实体识别系统的架构设计。我们将从基础概念出发,逐步解析医疗文本处理的特殊性,详细介绍实体识别技术的核心原理,并通过实际案例展示如何构建一个高效可靠的医疗实体识别系统。文章还将探讨当前技术面临的挑战和未来发展方向,为医疗AI领域的从业者
- 60天python训练计划----day59
在之前的学习中,我们层层递进的介绍了时序模型的发展,从AR到MA到ARMA,再到ARIMA。本质就是把数据处理的操作和模型结合在一起了,实际上昨天提到的季节性差分也可以合并到模型中,让流程变得更加统一。季节性差分用S来表示,所以这个模型叫做SARIMA模型一、SARIMA模型SARIMA(SeasonalAutoRegressiveIntegratedMovingAverage)是标准ARIMA模
- AI智能体原理及实践:从概念到落地的全链路解析
you的日常
人工智能大语言模型人工智能机器学习深度学习神经网络自然语言处理
AI智能体正从实验室走向现实世界,成为连接人类与数字世界的桥梁。它代表了人工智能技术从"知"到"行"的质变,是能自主感知环境、制定决策、执行任务并持续学习的软件系统。在2025年,AI智能体已渗透到智能家居、企业服务、医疗健康、教育和内容创作等领域,展现出强大的生产力与创造力。然而,其发展也伴随着技术挑战、伦理困境和安全风险,需要从架构设计到落地应用的全链条思考与平衡。一、AI智能体的核心定义与技
- 如何用 Python 实现模拟木星的运行轨道、自转、公转
wh3933
python开发语言
用Python来模拟木星的轨道运行、自转和公转是一个非常有趣且富有挑战性的项目。这需要结合天文学知识和编程技巧。我们将使用VPython这个库来实现这个模拟。VPython非常适合创建简单的3D物理场景和动画,它的语法直观,能够让我们快速地将物理概念转化为可视化的三维模型。在开始之前,请确保您已经安装了VPython。如果尚未安装,可以通过pip进行安装:pipinstallvpython模拟思路
- ASP.NET Web Pages - 教程
samFuB
asp.net前端后端
ASP.NET是一个使用HTML、CSS、JavaScript和服务器脚本创建网页和网站的开发框架。ASP.NET支持三种不同的开发模式:WebPages(Web页面)、MVC(ModelViewController模型-视图-控制器)、WebForms(Web窗体):本教程介绍WebPages。WebPagesMVCWebForms从何入手?多数开发人员学习一个新技术,是从查看运行实例开始的。通
- Kafka
小熊哥^--^
kafka分布式
一、什么是Kafka?Kafka的主要用途?Kafka是一个分布式流处理平台,是Apache的一个顶级项目,它被设计用于高吞吐量,分布式、持久性的数据流处理。Kafka实现了一套非常高效的一种发布订阅模型,应用场景非常广泛,比如日志聚合(收集日志)、数据流处理、数据仓库集成(传输数据到数据仓库)、应用程序集成(作为消息中间件来实现异步通信)、流媒体处理(列如实时监控,事件驱动的应用程序)二、top
- 人工智能动画展示人类的特征
AGI大模型与大数据研究院
AI大模型应用开发实战javapythonjavascriptkotlingolang架构人工智能
人工智能,动画,人类特征,情感识别,行为模拟,机器学习,深度学习,自然语言处理1.背景介绍人工智能(AI)技术近年来发展迅速,已渗透到生活的方方面面。从智能语音助手到自动驾驶汽车,AI正在改变着我们的世界。然而,尽管AI技术取得了令人瞩目的成就,但它仍然难以完全模拟人类的复杂行为和特征。人类的特征是多方面的,包括情感、认知、社交和创造力等。这些特征是人类区别于其他生物的重要标志,也是人类社会文明发
- 排查 DeepSeek API HandshakeFailure 错误的全景式指南
在Chatwise中调用DeepSeek模型时,reqwest抛出的AlertReceived(HandshakeFailure)通常意味着TLS握手阶段被服务器中止。本文透视DeepSeekAPI的TLS要求、Rust网络栈的实现细节以及常见的环境陷阱,借助可直接运行的代码与真实案例,给出一条可复制的排障路线。1 错误现象与日志解码Errorreqwest::Error{kind:Request
- Git通讲-第二章(4):分布式版本控制
焦糖酒
Git通讲git分布式
前言也是到第二章的第四篇了,这篇我希望能结合前面讲到的快照模型、不可变数据对象、分支模型的知识,来探讨Git是如何实现分布式这件事情的,或许会捎带嘴的提一下Github之类远程托管仓库平台的兴起。Git分布式版本控制的实现Git的分布式版本控制系统与传统的集中式版本控制(如SVN)相比,有几个关键的不同点。Git的架构使得每个开发者的本地仓库不仅仅是一个工作副本,而是一个完整的仓库,包含了项目的所
- 机器学习20-线性网络思考
坐吃山猪
机器学习机器学习人工智能线性网络
机器学习20-线性网络思考针对线性网络的基础问题,使用基础示例进行解释1-核心知识点1-线性模型家族的线性回归和逻辑回归分别是什么,线性模型家族还有没有其他的模型线性模型家族是一系列基于线性假设的统计模型,它们假设因变量和自变量之间存在线性关系。线性模型家族中的两个最常见模型是线性回归和逻辑回归。线性回归(LinearRegression):线性回归是一种用于预测连续因变量的模型。它假设因变量yy
- 文心一言插件:使用插件探索无限可能
前端
文心一言作为一款强大的语言模型,为我们提供了丰富的功能和应用场景。而文心一言插件的出现,进一步拓展了其功能,为用户带来了更多的便利和可能性。本文将详细介绍文心一言插件的使用方法,并通过一个具体的实例展示其在实际应用中的强大之处。一、文心一言插件的安装和启用访问文心一言官方网站,登录你的账号。在页面左侧的菜单中,点击“插件”选项。在插件页面中,你可以浏览可用的插件列表,选择你需要的插件并点击“安装”
- 巧用云平台API实现开源模型免费调用的实战教程
herosunly
AIGC人工智能大模型API实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法工程师一职,获得CSDN博客之星第一名,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得多项AI顶级比赛的Top名次,其中包括阿里云、科大讯飞比赛第一名,CCF、开放原子比赛二等奖。在技术创新领域拥有多项授权发明。曾辅导多位非科班出身的同学成功进入算法行业就业
- 线性回归 python代码
黄涵奕
python线性回归numpy机器学习开发语言
下面是一个线性回归模型的Python代码示例:importnumpyasnpfromsklearn.linear_modelimportLinearRegression#训练数据x=np.array([[1],[2],[3],[4],[5]])y=np.array([5,7,9,11,13])#建立模型reg=LinearRegression().fit(x,y)#预测reg.predict(np
- 【数据分析】Python实现线性回归和多元线性回归(全代码)
干了这一碗BUG
线性回归回归算法
老规矩,涉及到的数学原理,想深入了解的可以自行查阅相关资料,这里直接上干货用Python实现。目录逻辑回归中涉及的术语线性回归Python实现多元线性回归Python实现逻辑回归中涉及的术语以下是逻辑回归中一些常见的术语:自变量:应用于因变量预测的输入特征或预测因子。因变量:逻辑回归模型中的目标变量,即我们试图预测的变量。逻辑函数:用于表示自变量和因变量之间关系的公式。逻辑函数将输入变量转换为0到
- python实现多元线性回归算法 (附完整源码)
源代码大师
python算法完整教程算法python线性回归
python实现多元线性回归算法1.使用正规方程实现多元线性回归代码说明运行结果示例2.使用梯度下降法实现多元线性回归代码说明运行结果示例进一步优化与注意事项下面是使用Python从头实现多元线性回归算法的完整源码。这个实现利用了numpy进行矩阵运算,并展示了如何训练模型、进行预测以及评估模型性能。为了更全面,代码中还包含了一个使用梯度下降法(GradientDescent)优化参数的实现。多元
- 深度学习篇---简单果实分类网络
下面我将提供一个使用Python从零实现果实分类模型的完整流程,包括数据准备、模型构建、训练和部署,不依赖任何深度学习框架,仅使用NumPy进行数值计算。1.数据准备与预处理首先需要准备果实图像数据集,将其分为好果和坏果两类,并进行预处理:importosimportnumpyasnpfromPILimportImagefromsklearn.model_selectionimporttrain_
- 交互式模式下启用 SAI(SoC 架构信息)的操作解析
一、交互式模式启用SAI的核心逻辑与流程在交互式模式下启用SAI(SoCArchitectureInformation)是通过命令行逐行输入指令,动态构建芯片架构模型并实时查看反馈的操作方式。其核心优势在于灵活性高,适合设计早期的单场景探索与命令调试,具体流程如下:二、关键操作步骤与命令详解启动SAI功能(read_sai)作用:启动物理设计环境并进入SAI交互模式。命令格式:tclread_sa
- 利用 SoC 架构信息 (SAI) 创建自动网表的解析
weixin_45371279
innovus
基于SAI(SoCArchitectureInformation)创建网表是在无完整电路网表时启动物理设计的关键技术,通过解析架构描述并生成等效网表,使Innovus能够执行布局规划与分析。以下是核心功能与实现逻辑的详细说明:一、SAI自动网表生成的技术背景与目标当设计早期缺乏RTL或门级网表时,SAI自动网表生成通过抽象模型具体化的方式,将架构描述转换为物理设计工具可识别的网表结构,实现:提前启
- Python+AI十分钟自动生成小说!程序员:这工具让我月入5万+
小筱在线
人工智能人工智能开发语言
引言:AI写作革命已来,你准备好了吗?2025年的今天,AI写作已经从科幻概念变成了现实生产力。一位名叫李明的程序员在社交媒体上晒出他的收入截图:单月稿费突破5万元,而他的"秘密武器"竟是用Python开发的AI小说生成工具。这不是天方夜谭,而是正在发生的技术革命。随着GPT-4、Claude3等大语言模型的成熟,结合Python强大的自动化能力,任何人都可以在十分钟内生成一部完整的小说初稿。AI
- DeepSeek Chat
虾条_花吹雪
SpringAIai
SpringAI支持DeepSeek的各种AI语言模型。您可以与DeepSeek语言模型交互,并基于DeepSeek模型创建多语言会话助手。Prerequisites您需要使用DeepSeek创建一个API密钥来访问DeepSeek语言模型。在DeepSeek注册页面创建一个帐户,并在API密钥页面上生成一个令牌。SpringAI项目定义了一个名为Spring.AI.deepseek.api-ke
- 5、Spring AI(MCPServer+MCPClient+Ollama)开发环境搭建_第一篇
虾条_花吹雪
#开发环境搭建ai人工智能spring数据库学习
前言:该开发环境是在3、后端持久化(SpringBoot3.5.0+MybatisPlus3.5.5+mysql8.4.0)环境搭建上进行改造的,用到了后端持久化,主要改造的地方为数据库把email字段改为height(身高),该开发环境主要是设计了一个灌篮高手篮球经理对球队成员简单的查询,通过这个场景把MCPServer、MCPClient、大模型、用户客户端相互的职责和关系简单捋一下,其他的改
- Chat Memory
虾条_花吹雪
SpringAIai人工智能
大型语言模型(LLM)是无状态的,这意味着它们不保留有关以前交互的信息。当您想在多个交互中维护上下文或状态时,这可能是一个限制。为了解决这个问题,SpringAI提供了聊天记忆功能,允许您在与LLM的多次交互中存储和检索信息。ChatMemory抽象允许您实现各种类型的内存来支持不同的用例。消息的底层存储由ChatMemoryRepository处理,其唯一职责是存储和检索消息。由ChatMemo
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源