目录
动态内存分配存在的原因
动态内存函数的介绍
malloc和free
calloc
realloc
常见的动态内存错误
对NULL指针的解引用操作
对动态开辟空间的越界访问
对非动态开辟内存使用free释放
使用free释放一块动态开辟内存的一部分
对同一块动态内存多次释放
动态开辟内存忘记释放(内存泄漏)
几个经典的笔试题
题一
题目二
题目三
题目四
C/C++程序的内存开辟
柔性数组
柔性数组的特点
柔性数组的使用
柔性数组的优势
总结
我们先看两种内存开辟方式
int val = 20 ; // 在栈空间上开辟四个字节char arr [ 10 ] = { 0 }; // 在栈空间上开辟 10 个字节的连续空间
但是上述的开辟空间的方式有两个特点:
1. 空间开辟大小是固定的。
2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。
但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道, 那数组的编译时开辟空间的方式就不能满足了。 这时候就只能试试动态存开辟了。
C语言提供了一个动态内存开辟的函数:
void* malloc ( size_t size );
C 语言提供了另外一个函数 free ,专门是用来做动态内存的释放和回收的,函数原型如下:void
free ( void* ptr );
free 函数用来释放动态开辟的内存。
如果参数 ptr 指向的空间不是动态开辟的,那 free 函数的行为是未定义的。
如果参数 ptr 是 NULL 指针,则函数什么事都不做。
malloc和free都声明在 stdlib.h 头文件中。
eg:
#include int main (){// 代码 1int num = 0 ;scanf ( "%d" , & num );int arr [ num ] = { 0 };// 代码 2int* ptr = NULL ;ptr = ( int* ) malloc ( num * sizeof ( int ));if ( NULL != ptr ) // 判断 ptr 指针是否为空{int i = 0 ;for ( i = 0 ; i < num ; i ++ ){* ( ptr + i ) = 0 ;}}free ( ptr ); // 释放 ptr 所指向的动态内存ptr = NULL ; // 是否有必要?return 0 ;}
注意:这里的ptr=NULL是很有必要的,因为当ptr所指向的动态内存被释放后。如果不给ptr进行赋值,ptr就会变成野指针 。
C语言还提供了一个函数叫 calloc , calloc 函数也用来动态内存分配。原型如下:
void* calloc (size_t num, size_t size);
函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为 0 。
与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全 0 。
eg:
#include
#include
int main()
{
int* p = (int*)calloc(10, sizeof(int));
if (NULL != p)
{
//使用空间
}
free(p);
p = NULL;
return 0;
}
所以如何我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。
realloc 函数的出现让动态内存管理更加灵活。
有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时
候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小
的调整。
函数原型如下:
void* realloc (void* ptr, size_t size);
ptr 是要调整的内存地址
size 调整之后新大小
返回值为调整之后的内存起始位置。
这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。
realloc在调整内存空间的是存在两种情况:
情况1:原有空间之后有足够大的空间
情况2:原有空间之后没有足够大的空间
int main()
{
int *ptr = (int*)malloc(100);
if(ptr != NULL)
{
//业务处理
}
else
{
exit(EXIT_FAILURE);
}
int*p = NULL;
p = realloc(ptr, 1000);
if(p != NULL)
{
ptr = p;
}
//业务处理
free(ptr);
return 0;
}
注意:因为扩展不一定会成功,所以在扩展后,一定要进行判断,才能赋给ptr
void test()
{
int *p = (int *)malloc(INT_MAX/4);
*p = 20;
free(p);
}
如果p的值是NULL,就会出现问题
void test()
{
int i = 0;
int *p = (int *)malloc(10*sizeof(int));
if(NULL == p)
{
exit(EXIT_FAILURE);
}
for(i=0; i<=10; i++)
{
*(p+i) = i;
}
free(p);
}
总共增加了10个元素,下标最多遍历到9,所以当i=10的时候越界访问了,程序就崩掉了
void test() { int a = 10; int *p = &a; free(p); }
这里呢p为非动态开辟内存,不能用free释放,不然程序会崩溃
void test()
{
int *p = (int *)malloc(100);
p++;
free(p);
}
此时p不再指向动态内存的起始位置 ,如果运行程序就会崩掉
不能只释放一部分
要从起始位置开始
从头持续到结尾
void test()
{
int *p = (int *)malloc(100);
free(p);
free(p);
}
这里p进行了重复释放,程序会崩掉
void test()
{
int *p = (int *)malloc(100);
if(NULL != p)
{
*p = 20;
}
}
int main()
{
test();
while(1);
}
注意:malloc申请的动态内存只有两种释放方式:1、程序结束 2、用free进行释放
而这里程序既未结束,也没用free进行释放,忘记释放不再使用的动态开辟的空间会造成内存泄漏。
切记:
动态开辟的空间一定要释放,并且正确释放 。
void GetMemory(char *p)
{
p = (char *)malloc(100);
}
void Test(void)
{
char *str = NULL;
GetMemory(str);
strcpy(str, "hello world");
printf(str);
}
形参是实参的临时拷贝,代码对p进行了操作,但是对str毫无影响
而且这里由于GetMemory函数已经结束,已经找不到释放的位置,此处无法释放
对NULL指针进行引用操作,程序会崩溃且会出现内存泄漏
出了GetMemory后就会变成野指针
char *GetMemory(void)
{
char p[] = "hello world";
return p;
}
void Test(void)
{
char *str = NULL;
str = GetMemory();
printf(str);
}
运行结果发现
问题出现在
这就好比你租的房子到期了,房东将你的东西全部清出去,你还没来得及归换,这时候呢你这件房的钥匙,但是里面的东西不是你,如果你强行访问,就会存在非法访问
void GetMemory(char **p, int num)
{
*p = (char *)malloc(num);
}
void Test(void)
{
char *str = NULL;
GetMemory(&str, 100);
strcpy(str, "hello");
printf(str);
}
这里的问题就很明显了,没有释放动态内存块
void Test(void)
{
char *str = (char *) malloc(100);
strcpy(str, "hello");
free(str);
if(str != NULL)
{
strcpy(str, "world");
printf(str);
}
}
这里的问题也很明显,str提前释放了。这就相当于我点了个外卖,外卖员告诉我餐放楼下了,当我去找的时候餐已经被别人拿走了,我知道外卖的地址,却没有外卖
C/C++ 程序内存分配的几个区域:
1. 栈区( stack ):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结
束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是
分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返
回地址等。
2. 堆区( heap ):一般由程序员分配释放, 若程序员不释放,程序结束时可能由 OS 回收 。分
配方式类似于链表。
3. 数据段(静态区)( static )存放全局变量、静态数据。程序结束后由系统释放。
4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。
有了这幅图,我们就可以更好的理解在《 C 语言初识》中讲的 static 关键字修饰局部变量的例子了。
实际上普通的局部变量是在 栈区 分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。
但是被 static 修饰的变量存放在 数据段(静态区) ,数据段的特点是在上面创建的变量,直到程序
结束才销毁
所以生命周期变长。
也许你从来没有听说过 柔性数组( flexible array ) 这个概念,但是它确实是存在的。
C99 中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。
例如下面的就是柔性数组
typedef struct st_type
{
int i;
int a[0];//柔性数组成员
}type_a;
有些编译器会报错无法编译可以改成:
typedef struct st_type
{
int i;
int a[];//柔性数组成员
}type_a;
结构中的柔性数组成员前面必须至少一个其他成员。
sizeof 返回的这种结构大小不包括柔性数组的内存。
包含柔性数组成员的结构用 malloc () 函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。
eg:
typedef struct st_type
{
int i;
int a[0];//柔性数组成员
}type_a;
printf("%d\n", sizeof(type_a));//输出的是4
代码1
int i = 0;
type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int));
//业务处理
p->i = 100;
for(i=0; i<100; i++)
{
p->a[i] = i;
}
free(p);
这样柔性数组成员 a ,相当于获得了 100 个整型元素的连续空间。
代码2
typedef struct st_type
{
int i;
int *p_a;
}type_a;
type_a *p = (type_a *)malloc(sizeof(type_a));
p->i = 100;
p->p_a = (int *)malloc(p->i*sizeof(int));
//业务处理
for(i=0; i<100; i++)
{
p->p_a[i] = i;
}
//释放空间
free(p->p_a);
p->p_a = NULL;
free(p);
p = NULL;
上述 代码 1 和 代码 2 可以完成同样的功能,但是 方法 1 的实现有两个好处
第一个好处是: 方便内存释放
如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给
用户。用户调用 free 可以释放结构体,但是用户并不知道这个结构体内的成员也需要 free ,所以你
不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好
了,并返回给用户一个结构体指针,用户做一次 free 就可以把所有的内存也给释放掉。
第二个好处是:这样有利于访问速度.
连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正你跑不了要用做偏移量的加法来寻址)
关于自定义类型就讲解到这儿,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下。