参考内容:
斯坦福大学公开课 :机器学习课程
Stanford-CS-229-CN
Video 1 机器学习的动机与应用
一、Supervised Learning
1. Regression problems
如房价预测
2. Classification problems
如肿瘤是否良性
二、Learning Theory
三、Unsupervised Learning
如分隔两个声源的声音
四、Reinforcement Learning(强化学习)
1. reward function
如控制飞机自动飞行,bad dog & good dog example
Video 2 监督学习应用.梯度下降
一、Supervised Learning
1. Regression problem:
自动驾驶:人类司机教算法学习驾驶
房价预测:
- m = # training examples
- x = "input" variables/features
- y = "output" variables/ "target" variables
- (x, y) = training example
- ith training example = (x(i), y(i))
假设X1 = Size,X2 = # the rooms,
h(x) = hθ(x) = θ0 + θ1x1 + θ2x2
-
随机梯度下降 stochastic gradient descent (incremental DG) 在有大规模数据集时下降更快,在最小值附近徘徊。