- 本福特定律: 为什么银行存款、河流长度等集合的首位数字更容易出现 1 而不是 9?
go
银行存款、河流长度等数据的首位数字更容易出现1而不是9,这背后的数学原理是本福特定律(Benford'sLaw)。本福特定律的概述本福特定律(Benford'sLaw)又称首位数字定律,是一种描述自然生成数据中数字分布规律的统计学现象。该定律揭示了在多种实际数据集中,数字1-9作为首位数字出现的概率呈现特定规律性分布。数学表达式首位数字d出现的概率为:P(d)=log₁₀(1+1/d),其中d∈{
- 以量子“自相干—波函数”理论的破产奠基唯物唯一的《自然集合论》
留下一片云
科技
违背守恒定律-物质唯一性的“自相干即可改变衍射方向”思想实验:在接受屏光栅“电子落点处”继续开缝衍射。多级重复角度叠加后,按量子“波函数”理论,“电子只靠自相干,不需任何外部作用即可任意变向、返回”,“拔着自己的头发离开了地球”。唯心的经典骗术:“天机不可泄露”—“观察导致坍缩”。—————————自然集合论自然是融洽无矛盾的客观存在,唯物唯一。集合有统属,万物归自然。集合内性本善,逻辑/规则在集
- 4.4《光的折射》
耶柴
物理备课(八上)学习
教会什么:光的折射定律培养什么:课标:(二)运动和相互作用2.3声和光2.3.3通过实验,了解光的折射现象及其特点。例6通过光束从空气射入水(或玻璃)中的实验,了解光的折射现象及其特点。一、导入实验引入:茶碗+硬币【光的折射引入】光的折射引入_哔哩哔哩_bilibili(也可使用投影仪+纸杯+硬币,将角度调整为恰好看不到硬币的时候,加入水,通过折射便可以看到部分硬币。)我们可以观察到什么?(刚刚开
- 实验六 多cache一致性——监听协议_多核Cache一致性
weixin_39576336
实验六多cache一致性——监听协议
经过这么多篇文章的介绍,我们应该已经对Cache有一个比较清晰的认识。Cache会面临哪些问题,我们该怎么处理这些问题。现在我们讨论多核Cache一致性问题。在摩尔定律不太适用的今天,人们试图增加CPU核数以提升系统整体性能。这类系统称之为多核系统(简称MP,Multi-Processor)。我们知道每个CPU都有一个私有的L1Cache(不细分iCache和dCache)。假设一个2核的系统,我
- 二八定律学sed
m0_53747349
#linux知识库linux
sed(流编辑器)是一种强大的文本处理工具,常用于对输入流(文件或管道)进行基本的文本转换。初学者会有畏难情绪,但是我想这个命令的使用是遵循二八定律的,有一些最常见的命令,所以,在生产环境中,寻找什么是sed最常用的操作是有意义的:1.替换文本语法:s/原内容/替换内容/[选项]全局替换(每行所有匹配):sed's/old/new/g'file.txt替换第N次出现的匹配:sed's/old/ne
- 机器人技能列表
极梦网络无忧
杂谈机器人
一、机器人制作基础入门(一)机器人概述1.机器人的定义与分类2.机器人的发展历程与现状3.机器人在各领域的应用案例(二)必备工具与材料4.常用电子工具介绍(万用表、电烙铁等)5.机械加工工具(螺丝刀、钳子、扳手等)6.电子元件(电阻、电容、二极管等)7.结构材料(塑料、金属、木材等)二、电子电路基础(一)电路原理与设计8.电路基本概念(电流、电压、电阻等)9.欧姆定律与基尔霍夫定律10.简单电路设
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- 数学:从宇宙密码到人工智能的核心语言
Acd_713
数学学习
——解析数学本质、历史演进与未来革命的3000年全景图一、数学本质论:宇宙的元语言1.1数学实在论的拓扑诠释根据丘成桐的卡拉比-丘流形理论,物理定律可表述为:MCY↪CPn满足c1(M)=0\mathcal{M}_{CY}\hookrightarrow\mathbb{C}\mathbb{P}^n\quad\text{满足}\quadc_1(\mathcal{M})=0MCY↪CPn满足c1(M)=
- 用物理信息神经网络(PINN)解决实际优化问题:全面解析与实践
青橘MATLAB学习
深度学习网络设计人工智能深度学习物理信息神经网络强化学习
摘要本文系统介绍了物理信息神经网络(PINN)在解决实际优化问题中的创新应用。通过将物理定律与神经网络深度融合,PINN在摆的倒立控制、最短时间路径规划及航天器借力飞行轨道设计等复杂任务中展现出显著优势。实验表明,PINN相比传统数值方法及强化学习(RL)/遗传算法(GA),在收敛速度、解的稳定性及物理保真度上均实现突破性提升。关键词:物理信息神经网络;优化任务;深度学习;强化学习;航天器轨道一、
- 太翌氏文化产业: AGI架构部署
太翌修仙笔录
deepseek第三代人工智能agi架构人工智能
在之前RGOA-重力算法等基础上,分析春秋历日盘排盘驱动行为的ai模式,是否达到AGI标准春秋历日盘排盘驱动行为的AI模式与AGI标准的对比分析一、RGOA-重力算法与春秋历日盘排盘的核心逻辑RGOA算法原理RGOA(GravitationalSearchAlgorithm)是一种基于物理引力定律的优化算法,通过模拟粒子在引力场中的运动来寻找最优解。其核心公式为:Fij=GmimjRij2+ϵ和a
- 电阻在电路中的不同作用及阻值选择详述
DeepGpt
器件选型硬件工程
一、电阻的常见作用限流(CurrentLimiting)描述:限制通过电路或元件的电流,保护器件(如LED)。特点:根据欧姆定律(R=V/I)计算阻值。阻值选择:取决于电流大小和电压降。分压(VoltageDivision)描述:与其他电阻串联,分担电压,提供特定电平。特点:常用于电位器或信号调整。阻值选择:根据分压比(Vout=Vin×R2/(R1+R2))计算。上拉/下拉(Pull-up/Pu
- 从单块巨石到星辰大海:分布式与微服务的本质思考
斗-匕
分布式微服务架构
一、分布式系统:宇宙观的代码映射1.核心命题的进化单机时代(1960s-2000s):冯·诺依曼架构的终极演绎,摩尔定律撑起性能天花板分布式觉醒(2000s-):CAP定理的启示——放弃"完美系统"的幻想,在妥协中寻找最优解2.分布式三定律物理定律:光速限制下的通信延迟不可消除经济定律:成本边际效应决定拆分粒度组织定律:康威定律的幽灵始终在场(系统架构≈组织架构)3.典型范式对比模式特征案例主从架
- 【人工智能】大模型的Scaling Laws(缩放定律),通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。
本本本添哥
013-AIGC人工智能大模型人工智能深度学习机器学习
缩放定律(ScalingLaws)是人工智能领域中关于大模型性能提升的重要理论,其核心思想是通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。这一理论最早由OpenAI在2020年提出,并在随后的研究中得到了广泛验证和应用。ScalingLaws就像是指导手册一样,告诉我们在构建和训练AI模型时应该注意什么,以最经济有效的方式得到最好的成果。这有助于推动技术进步的同时也促进了可持
- 思考–如何学习陌生的知识
后知后觉的先行者
思考学习
思考–如何学习陌生的知识面对新知识的学习,可以遵循以下系统化的方法,既提高效率又减少迷茫感:一、明确学习目标:打破“学什么都要学全”的误区核心原则二八定律:80%的实用场景只需掌握20%的核心知识。场景驱动:明确“学这个知识要解决什么问题?”(例如:学Python是为了数据分析还是自动化办公?)。快速定位重点通过行业标杆案例、岗位JD或技术文档,提取高频关键词(如“神经网络”之于AI、“API调用
- 单片机学习规划
鬼手点金
技术感悟单片机嵌入式硬件
学习单片机是一个系统化的过程,以下是一个合理的学习规划,帮助你从基础到进阶逐步掌握单片机开发技能。第一阶段:基础知识准备电子基础:学习电路基础知识:电阻、电容、电感、二极管、三极管等。掌握基本电路分析方法:欧姆定律、基尔霍夫定律等。了解数字电路基础:逻辑门、触发器、计数器等。C语言编程:学习C语言基础:数据类型、运算符、控制语句、函数、数组、指针等。熟悉C语言在嵌入式开发中的应用:位操作、结构体、
- 蓝桥杯 2022 Java 研究生省赛 3 题 质因数个数
菜鸟0088
蓝桥杯java职场和发展
importjava.util.Scanner;//1:无需package//2:类名必须Main,不可修改publicclassMain{publicstaticvoidmain(String[]args){Scannerscan=newScanner(System.in);//唯一分离定律任何一个数都可以被分解为两个质数相乘的形式//所以找质因数当一个数能longn=scan.nextLong
- Meta:基于数据关系的LLM高效预训练
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:Data-EfficientPretrainingwithGroup-LevelDataInfluenceModeling来源:arXiv,2502.14709摘要数据高效的预训练已显示出提高缩放定律的巨大潜力。本文认为有效的预训练数据应该在组级别进行管理,将一组数据点作为一个整体而不是独立的贡献者。为此,我们提出了一种新的数据高效预训练方法GroupLevelDataInfluenceMo
- 机器学习----奥卡姆剃刀定律
AI自修室
计算机视觉面试题机器学习人工智能
奥卡姆剃刀定律(Occam’sRazor)是一条哲学原则,通常表述为“如无必要,勿增实体”(Entitiesshouldnotbemultipliedbeyondnecessity)或“在其他条件相同的情况下,最简单的解释往往是最好的”。这一原则由14世纪的英格兰逻辑学家和神学家威廉·奥卡姆提出。它提倡在解释现象时,应尽量减少假设和复杂性,优先选择最简单的解释。奥卡姆剃刀定律对机器学习模型优化的启
- 《数字围城与看不见的手:网络安全的经济哲学简史》
安全
(楔子:从青铜铸币到数据流)公元前7世纪,吕底亚人将琥珀金铸成硬币,货币流动催生了人类的安全难题——如何防止赝品渗透经济血脉。2023年,某跨国电商平台因API接口漏洞,每秒有317个虚拟账户在暗网交易数字资产。这组跨越时空的数据揭示永恒定律:财富形态决定安全范式,防护技术永远比攻击手段晚进化0.618个黄金分割周期。一、数据资本论:生产要素的惊险跳跃当亚当·斯密凝视别针工厂时,他看到的劳动分工正
- 嵌入式硬件篇---数字电子技术中的逻辑运算
Ronin-Lotus
嵌入式硬件篇嵌入式硬件数字电子技术逻辑运算
、文章目录前言一、基本逻辑运算1.与运算(AND)符号真值表功能应用2.或运算(OR)符号真值表功能应用3.非运算(NOT符号真值表功能应用4.异或运算(XOR)符号真值表功能应用5.同或运算(XNOR)符号真值表功能应用二、组合逻辑运算1.与非(NAND)符号真值表特点应用2.或非(NOR)符号真值表特点应用3.三态逻辑(Tri-state)符号功能应用三、逻辑运算的扩展规则1.德摩根定律(De
- 第二个问题-阿西莫夫三定律的理解
释迦呼呼
AI一千问人工智能
阿西莫夫三定律是由科幻小说家艾萨克·阿西莫夫提出的机器人伦理准则,旨在确保机器人(或人工智能,AI)在与人类互动时,优先保护人类的安全和利益。这三个定律分别是:机器人不得伤害人类,或坐视人类受到伤害。机器人必须服从人类的命令,除非这些命令与第一定律相冲突。机器人必须保护自己,除非这种保护与前两个定律相冲突。以下从几个方面详细探讨如何理解这一定律:1.阿西莫夫三定律的本质:伦理框架而非技术规范阿西莫
- CPU多级缓存结构以及缓存一致性协议MESI
又菜又爱玩٩( ö̆ ) و
并发编程缓存硬件架构
CPU多级缓存结构现代CPU分为物理核和逻辑核,比如我们日常办公电脑常见的4核8线程,就是指的4个物理核、8个逻辑核。超线程的技术使得一个物理核可以同时做两件事,也就是执行两个线程,但是能真正执行两个线程的场景很少。Java中API获取的核数,就是指的逻辑核。CPU在摩尔定律的指导下以每18个月翻一番的速度在发展,然而内存和硬盘的发展速度远远不及CPU。现代CPU为了提升执行效率,减少CPU与内存
- 符号学习初学代码——从开普勒第三定律到万有引力定律
Merci美滋滋
学习python机器学习
备注PINN——physicsinformedneuralnetworkSR——symbolicregression代码详细分析见评论区链接一、SR_testimportnumpyasnpT=np.array([0.241,0.615,1,1.881,11.862]).reshape(-1,1)R=np.array([0.381,0.723,1,1.524,5.023]).reshape(-1,1
- Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
UnknownBody
LLMDailytransformer深度学习人工智能语言模型
本文是LLM系列文章,针对《BeyondScalingLaws:UnderstandingTransformerPerformancewithAssociativeMemory》的翻译。超越缩放定律:用联想记忆理解Transformer性能摘要1引言2相关工作3模型4新的能量函数5交叉熵损失6实验结果7结论摘要增大Transformer模型的大小并不总是能够提高性能。这种现象不能用经验缩放定律来解
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 斜面摩擦系数测量仪产品特点及参数介绍
milaiyiqi
测试工具功能测试
COF-05斜面摩擦系数仪是一种专门用于测量物体与表面之间摩擦系数的精密设备。它通过模拟不同倾斜角度下的滑动情况,来计算两个接触面之间的摩擦力大小,进而得出摩擦系数。这项技术在材料科学、工程学以及质量控制领域有着广泛的应用。工作原理斜面摩擦系数仪的基本工作原理基于牛顿力学定律,尤其是重力和摩擦力的相互作用。测试时,将待测样品放置于一个可以调节角度的斜面上,然后逐渐增加斜面的角度直到样品开始滑动。根
- 《电磁学》第十二章
请向我看齐
电机电控电机电磁
以下是《电磁学》第十二章的常见内容,以张三慧编著的《大学物理学电磁学(第3版)》为例:12.1电荷电荷是一种物质属性,有正、负电荷两类,同性相斥、异性相吸。起电方法包括摩擦起电,即电荷从一物体转移到另一物体;感应起电,即电荷在同一物体上移动。电荷守恒定律表明电荷不能创造,也不会自行消失,只能从一个物体转移到另一个物体,在整个过程中电荷的代数和守恒。电荷的量子化指物体带电量是基本电荷的整数倍。电荷具
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- CES 2025 NVIDIA Project DIGITS 与更多突破性发布全解析
新加坡内哥谈技术
人工智能科技生活自动化深度学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/观看视频B站链接:【年尾特献:AI的规模定律(scalinglaw)和芯片业达到瓶颈了吗
- 基于泰勒展开改进的物理信息神经网络
天天酷科研
物理信息网络PINN神经网络人工智能深度学习
基于泰勒展开改进的物理信息神经网络一、引言1.1、研究背景和意义物理信息神经网络(PINN)作为一种结合物理模型和数据驱动的新型神经网络模型,近年来在科学计算和工程应用中展示了广泛的应用前景。PINN通过将物理定律嵌入到神经网络的损失函数中,能够在缺乏大量数据的情况下,有效地解决复杂的物理问题。这种方法不仅提高了模型的预测准确性,还增强了模型的泛化能力和解释性,因此在流体力学、材料科学、地球科学等
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D