- yolov5 +gui界面+单目测距 实现对图片视频摄像头的测距
毕设宇航
QQ767172261yolov5单目测距
可实现对图片,视频,摄像头的检测项目概述本项目旨在实现一个集成了YOLOv5目标检测算法、图形用户界面(GUI)以及单目测距功能的系统。该系统能够对图片、视频或实时摄像头输入进行目标检测,并估算目标的距离。通过结合YOLOv5的强大检测能力和单目测距技术,系统能够在多种应用场景中提供高效、准确的目标检测和测距功能。技术栈YOLOv5:用于目标检测的深度学习模型。OpenCV:用于图像处理和单目测距
- 目标检测-YOLOv1
wydxry
深度学习目标检测YOLO人工智能
YOLOv1介绍YOLOv1(YouOnlyLookOnceversion1)是一种用于目标检测的深度学习算法,由JosephRedmon等人于2016年提出。它基于单个卷积神经网络,将目标检测任务转化为一个回归问题,通过在图像上划分网格并预测每个网格中是否包含目标以及目标的位置和类别来实现目标检测。YOLOv1的主要特点包括:快速的检测速度:相比于传统的目标检测算法,YOLOv1具有更快的检测速
- yolo 3d车辆目标检测(教程+代码)
阿利同学
YOLO3d目标检测计算机视觉人工智能3d目标检测
关于3D目标检测及其与YOLO3D相关性的概览:3D目标检测:开启视觉感知的新维度随着计算机视觉技术的发展,目标检测算法已经成为人工智能领域的重要组成部分。从自动驾驶汽车到无人机导航,再到增强现实(AR)应用,3D目标检测技术正在逐步改变我们与周围环境交互的方式。传统的2D目标检测虽然取得了显著的进步,但在处理三维空间中的物体识别与定位时却显得力不从心。因此,3D目标检测技术应运而生,它不仅能够识
- AI深度学习项目-yolo4_tiny 垃圾分类识别系统
毕设宇航
yolov4垃圾识别QQ767172261
项目概述目标本项目旨在开发一个高效的垃圾分类识别系统,利用深度学习技术特别是YOLOv4-tiny版本来实现垃圾的自动分类。YOLOv4-tiny作为YOLOv4的一个轻量化版本,在保证较高精度的同时,能够提供更快的检测速度,非常适合资源受限的设备或者要求实时性的应用场景。技术栈深度学习框架:PyTorch目标检测算法:YOLOv4-tiny编程语言:Python硬件加速:GPU(如果可用)功能特
- Datawhale AI夏令营第五期CV Task02
m0_60530253
人工智能深度学习
一、yolo模型介绍YOLO,全称为"YouOnlyLookOnce",是一种流行的实时目标检测算法,由JosephRedmon等人于2015年首次提出。YOLO的核心思想是将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。这种设计使得YOLO能够以非常快的速度进行目标检测,同时保持较高的精度,特别适合需要实时处理的应用场景。YOLO算法的一个显著特点是它在单个网络
- 【论文笔记】:LAYN:用于小目标检测的轻量级多尺度注意力YOLOv8网络
hhhhhhkkkyyy
论文阅读目标检测YOLO
背景针对嵌入式设备对目标检测算法的需求,大多数主流目标检测框架目前缺乏针对小目标的具体改进,然后提出的一种轻量级多尺度注意力YOLOv8小目标检测算法。小目标检测精度低的原因随着网络在训练过程中的加深,检测到的目标容易丢失边缘信息和灰度信息等。获得高级语义信息也较少,图像中可能存在一些噪声信息,误导训练网络学习不正确的特征。映射到原始图像的感受野的大小。当感受野相对较小时,空间结构特征保留较多,但
- 基于yolov8的脑肿瘤检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO人工智能
【算法介绍】基于YOLOv8的脑肿瘤检测系统是一项前沿的医疗应用,该系统利用YOLOv8这一高效的目标检测算法,实现对脑肿瘤病灶的快速、准确识别。YOLOv8作为YOLO系列的最新版本,不仅继承了前代版本在速度和精度上的优势,还通过改进的网络结构和优化策略,进一步提升了模型性能。在脑肿瘤检测中,YOLOv8通过深度学习技术,自动从脑部图像中提取特征,并学习目标的特征表示和位置信息。系统采用模块化设
- 基于yolov8的8种人脸表情检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLOpython开发语言
【算法介绍】基于YOLOv8的人脸表情检测系统是一个结合了先进目标检测算法(YOLOv8)与深度学习技术的项目,旨在实时或离线地识别并分类人脸表情(如快乐、悲伤、愤怒、惊讶、恐惧、厌恶、中立等)。以下是一个简短的介绍,概述了该系统Python源码的核心要点:该系统直接利用YOLOv8模型进行人脸表情识别。YOLOv8以其高效的速度和准确性著称,非常适合实时应用。Python源码实现通常包括以下几个
- 【YOLO系列】YOLO介绍
有品位的小丑
目标检测与生成式模型学习记录YOLO目标跟踪人工智能
目录前言一、算法特点二、工作原理前言YOLO,全称为"YouOnlyLookOnce",是一种流行的实时目标检测算法,由JosephRedmon等人于2015年首次提出。YOLO的核心思想是将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。这种设计使得YOLO能够以非常快的速度进行目标检测,同时保持较高的精度,特别适合需要实时处理的应用场景。一、算法特点速度快YOL
- 图像算法实习生--面经1
小豆包的小朋友0217
算法
系列文章目录文章目录系列文章目录前言一、为什么torch里面要用optimizer.zero_grad()进行梯度置0二、Unet神经网络为什么会在医学图像分割表现好?三、transformer相关问题四、介绍一下胶囊网络的动态路由五、yolo系列出到v9了,介绍一下你最熟悉的yolo算法六、一阶段目标检测算法和二阶段目标检测算法有什么区别?七、讲一下剪枝八、讲一下PTQandQAT量化的区别九、
- 【计算机视觉面经四】基于深度学习的目标检测算法面试必备(RCNN~YOLOv5)
旅途中的宽~
计算机视觉面经总结计算机视觉深度学习目标检测YOLORCNN
文章目录一、前言二、两阶段目标检测算法2.1RCNN2.2Fast-RCNN2.3FasterR-CNN三、多阶段目标检测算法3.1CascadeR-CNN四、单阶段目标检测算法4.1编码方式4.1.1基于中心坐标4.1.1.1方案14.1.1.2方案24.1.1.3方案34.2YOLOv14.3SSD4.4YOLOv24.5RetinaNet4.6YOLOv34.7YOLOv44.8YOLOv5
- ChatGPT聊YOLO
AIWalker-Happy
YOLOchatgptYOLO
最近ChatGPT大伙,其概括摘要能力非常强。YOLO系列算法也是目标检测领域非常重要的一个研究路线,那么ChatGPT是如何看待各个YOLO算法的呢?那我们去问问它如何看待各个版本的YOLO。截止到2021年9月,YOLOv6尚未发布。因此,无法对其进行价值和贡献的评价。在这之前,最新的YOLO系列算法是YOLOv5。如果有关于YOLOv5或者其他目标检测算法的问题,欢迎随时提问。----Cha
- 互联网加竞赛 机器视觉目标检测 - opencv 深度学习
Mr.D学长
pythonjava
文章目录0前言2目标检测概念3目标分类、定位、检测示例4传统目标检测5两类目标检测算法5.1相关研究5.1.1选择性搜索5.1.2OverFeat5.2基于区域提名的方法5.2.1R-CNN5.2.2SPP-net5.2.3FastR-CNN5.3端到端的方法YOLOSSD6人体检测结果7最后0前言优质竞赛项目系列,今天要分享的是机器视觉opencv深度学习目标检测该项目较为新颖,适合作为竞赛课题
- YoloV8 +可视化界面+GUI+交互式界面目标检测与跟踪
阿利同学
YOLO目标检测人工智能目标检测可视化界面yolo界面制作交互
YoloV8可视化界面GUI本项目旨在基于YoloV8目标检测算法开发一个直观的可视化界面,使用户能够轻松上传图像或视频,并对其进行目标检测。通过图形用户界面,用户可以方便地调整检测参数、查看检测结果,并将结果保存或导出。同时,该界面还将提供实时目标检测功能,让用户能够在视频流中实时观察目标的检测情况。这个项目将结合YoloV8强大的检测能力和直观的用户交互,为用户提供一种全新的目标检测体验。如何
- 目标检测算法之YOLOv5的应用实例(零售业库存管理、无人机航拍分析、工业自动化领域应用的详解)
小嘤嘤怪学
目标检测算法YOLOYOLOv5深度学习
1.YOLOv5在"零售业库存管理"领域的应用在零售业库存管理中,YOLOv5可以帮助自动化商品识别和库存盘点过程。通过使用深度学习模型来实时识别货架上的商品,零售商可以更高效地管理库存,减少人工盘点的时间和成本。以下是一个使用YOLOv5进行商品识别的Python脚本示例:importcv2importyolov5#初始化YOLOv5模型model=yolov5.YOLOv5(weights="
- 目标检测算法之YOLOv5在乒乓球赛事中运动员行为分析领域的应用实例详解(优化版--下)
小嘤嘤怪学
目标检测算法YOLOyolov5人工智能深度学习计算机视觉
为了进一步提升代码的效率和可维护性,可以考虑以下几个方面的优化:1.**视频解码优化**:-使用OpenCV的`preprocess`功能来直接从原始视频帧中提取RGB图像,避免不必要的复制和转换。2.**模型推理优化**:-使用ONNXRuntime的定制配置,如启用自动形状推测和启用量化模式,来进一步提高模型推理速度。3.**结果后处理优化**:-使用更高效的非极大值抑制(NMS)实现,如使用
- 目标检测算法之YOLOv5的应用实例(智能交通信号控制、体育赛事分析、野生动物研究领域应用的详解)
小嘤嘤怪学
目标检测YOLO自动驾驶
1.YOLOv5在"智能交通信号控制"领域的应用在智能交通信号控制领域,YOLOv5可以通过实时检测交通流量的变化来辅助信号灯的调度决策。例如,在交通繁忙的交叉路口,YOLOv5可以检测到各个方向的车流量,帮助交通控制系统动态调整绿灯时长,减少拥堵。以下是一个简化的Python示例,演示了如何使用YOLOv5来检测视频流中的车辆,并据此作出一些基本的决策。importcv2importyolov5
- 目标检测算法之YOLOv5在社交媒体内容审核领域的应用实例详解
小嘤嘤怪学
YOLO媒体yolov5深度学习算法目标检测人工智能
目录YOLOv5具体工作流程应用实例及代码优化再优化继续优化YOLOv5具体工作流程YOLOv5可以在社交媒体内容审核领域发挥重要作用,具体工作流程如下:1.**数据准备**:首先,收集大量标记过的图像和视频数据,这些数据包含了需要被检测的内容类别,例如暴力、色情、仇恨言论等的视觉标识。2.**模型训练**:使用这些数据对YOLOv5模型进行训练。训练过程中,模型学习如何从图像中识别和定位这些不良
- 深度学习||YOLO(You Only Look Once)深度学习的实时目标检测算法(YOLOv1~YOLOv5)
小嘤嘤怪学
深度学习算法目标检测
目录YOLOv1:YOLOv2:YOLOv3:YOLOv4:YOLOv5:总结:YOLO(YouOnlyLookOnce)是一系列基于深度学习的实时目标检测算法。自从2015年首次被提出以来,YOLO系列不断发展,推出了多个版本,包括YOLOv1,YOLOv2,YOLOv3,YOLOv4,和YOLOv5等。下面是对YOLO系列的详解:YOLOv1:提出时间:2015年。主要贡献:将目标检测任务转换
- 英文论文(sci)解读复现【NO.18】基于DS-YOLOv8的目标检测方法用于遥感图像
人工智能算法研究院
英文论文解读复现目标跟踪人工智能机器学习
此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行创新点代码复现,有需要的朋友可关注私信我获取。一、摘要改进的YOLOv8模型(DCN_C2f+SC_
- 英文论文(sci)解读复现【NO.20】TPH-YOLOv5++:增强捕获无人机的目标检测跨层不对称变压器的场景
人工智能算法研究院
英文论文解读复现YOLO目标检测人工智能
此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行创新点代码复现,有需要的朋友可关注私信我获取。一、摘要无人机拍摄图像中的目标检测是近年来的一项热门任
- 英文论文(sci)解读复现【NO.21】一种基于空间坐标的轻量级目标检测器无人机航空图像的自注意
人工智能算法研究院
英文论文解读复现YOLO目标检测人工智能
此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行创新点代码复现,有需要的朋友可关注私信我获取。一、摘要目标检测是众多无人驾驶最广泛的应用之一飞行器(
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- 一阶段目标检测算法:流程详解
小厂程序猿
目标跟踪人工智能计算机视觉
目标检测是计算机视觉领域的一个重要研究方向,旨在识别图像中的物体并确定其位置和大小。一阶段目标检测算法以其较快的处理速度和较高的实时性而受到关注。本文将详细阐述一阶段目标检测算法的流程,帮助读者深入了解其原理和实现方法。1.预处理在进行目标检测之前,通常需要对输入图像进行预处理,以提高检测性能。预处理步骤可能包括缩放、裁剪、归一化等操作,以减少图像中的噪声并调整图像大小以适应网络输入。2.特征提取
- YOLO系列详解(YOLOV1-YOLOV3)
X.AI666
深度学习yolo
YOLO算法简介本文主要介绍YOLO算法,包括YOLOv1、YOLOv2/YOLO9000和YOLOv3。YOLO算法作为one-stage目标检测算法最典型的代表,其基于深度神经网络进行对象的识别和定位,运行速度很快,可以用于实时系统。了解YOLO是对目标检测算法研究的一个必须步骤。目标检测思路目标检测属于计算机视觉的一个中层任务,该任务可以细化为目标定位与目标识别两个任务,简单来说,找到图片中
- 手工设计特征方法指的是什么算法?是什么意思?
legendarylin
算法计算机视觉图像处理
手工设计特征方法是指在目标检测算法中,通过人工设计图像特征来识别目标物体的算法。相对于基于深度学习的方法,手工设计特征方法需要对图像特征进行人工选择和设计,需要大量的专业知识和经验,但在一些场景中仍然有广泛的应用。下面是一些常用的手工设计特征方法和举例:Haar特征:Haar特征是一种用于目标检测的特征,它通过计算图像中的灰度差异来识别目标物体。Haar特征被广泛应用于人脸检测算法中,如Viola
- [YOLOv8] - YOLO数据集格式介绍和案例
老狼IT工作室
YOLOYOLO数据集格式
YOLO(YouOnlyLookOnce)是一种目标检测算法,它使用了一个单独的神经网络来同时识别图像中的多个对象。它可以支持一下多种的训练数据集的格式。其中YOLO数据集格式是非常常用的一种。YOLODataSetFormat-UltralyticsYOLOv8DocsYOLO数据集格式YOLO数据集的格式主要包括以下几部分:图像文件:这是数据集中的图像文件,通常是jpg或png格式。标注文件:
- 揭秘YOLO:深入理解目标检测的神奇算法
洞深视界
yolo机器学习人工智能YOLO目标检测算法git
目标检测,就像电影中的侦探找寻线索,让计算机能够发现并识别图像中的物体。在目标检测领域,YOLO(YouOnlyLookOnce)算法犹如一位神奇的探险家,通过一瞥就能洞察图像的奥秘。本篇博客将深入解析YOLO算法,让我们一同揭秘这场目标检测的冒险之旅。什么是YOLO?首先,让我们认识一下这位神奇的探险家——YOLO。YOLO是一种目标检测算法,与传统的目标检测方法不同,它通过一次前向传递就能够同
- Transformer实战-系列教程13:DETR 算法解读
机器学习杨卓越
Transformer实战transformer深度学习DETR物体检测
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码1、物体检测说到目标检测你能想到什么faster-rcnn系列,开山之作,各种proposal方法YOLO肯定也少不了,都是基于anchor这路子玩的NMS那也一定得用上,输出结果肯定要过滤一下的如果一个目标检测算法,上面这三点都木有,你说神不神
- 深度学习知识点汇总-目标检测(1)
深度学习模型优化
8.1R-FCNR-FCN属于two-stage的目标检测算法。backbone部分RPN,这里使用ResNet。head部分R-FCN,使用全连接网络。其中ResNet-101+R-FCN的方法在PASCALVOC2007测试数据集的mmAP达到83.6%。图1人脸检测R-FCN的核心思想得到目标多个特征。假设我们只有一个特征图用来检测右眼。那么我们可以使用它定位人脸吗?应该可以。因为右眼应该在
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST