- AWS上基于Llama 3模型检测Amazon Redshift里文本数据的语法和语义错误的设计方案
weixin_30777913
数据仓库云计算awsllama
一、技术栈选型核心服务:AmazonRedshift:存储原始文本和检测结果AmazonBedrock:托管Llama370B模型AWSLambda:无服务计算(Python运行时)AmazonS3:中间数据存储AWSStepFunctions:工作流编排辅助工具:psycopg2:RedshiftPython连接器boto3:AWSSDKforPythonPandas:数据批处理JSONSche
- AIGC 实战:如何使用 Docker 在 Ollama 上离线运行大模型(LLM)
surfirst
LLM架构AIGCdocker容器LLM大模型
Ollama简介Ollama是一个开源平台,用于管理和运行各种大型语言模型(LLM),例如Llama2、Mistral和Tinyllama。它提供命令行界面(CLI)用于安装、模型管理和交互。您可以使用Ollama根据您的需求下载、加载和运行不同的LLM模型。Docker简介Docker是一个容器化平台,它将应用程序及其依赖项打包成一个可移植的单元,称为容器。容器与主机系统隔离,确保运行应用程序时
- DataWhale 组队学习 wow-agent task2 体验总结归纳
菜鸟码农01
学习datawhale
一、Llama-index知识体验1.ReActAgent与业务自动化ReActAgent:通过ReActAgent,业务逻辑可以自动转换为代码,只要有相应的API,模型就可以调用。这种自动化能力使得许多业务场景变得更加高效和智能化。LlamaIndex开源工具:LlamaIndex提供了一些开源工具,帮助开发者实现这些功能。通过访问官网,开发者可以获取这些工具并应用到自己的项目中。2.Agent
- 大模型prompt实例:知识库信息质量校验模块
写代码的中青年
大模型prompt人工智能python大模型LLM
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factory的指令增
- Windows10/11部署llama及webUi使用
闲杂人等12138
AI探索windowsllamadocker
前言整体是希望在windows下安装llama3:8b以及gemma:7b两个大模型,并使用open/ollama-webui来访问从目标出发,llama3和gemma都属于开源大模型,可以自行编译,但是那个步骤对于初步探索的人来说要求太高了,暂时不考虑这条路。因此以先用起来的目的作为导向,强烈推荐直接使用官方推荐的ollama来直接安装。open/ollama-webui,现在叫open-web
- LLaMA-Factory 安装linux部署&conda笔记
jayxlb2
llama笔记ai
第一行代码是我导入https://github.com/hiyouga/LLaMA-Factory.git到我的项目那里的,试过网上随便搜索过相同,估计没更新,安装了几次都运行失败,克隆了最新的就安装成功了。方法1没虚拟环境:不知道成不成功,我使用conda管理安装的gitclonehttps://gitcode.com/wengxiezhen2671/LLaMA-Factory.gitcdLLa
- DeepSeek-R1 蒸馏 Qwen 和 Llama 架构 企业级RAG知识库
qq_25467441
人工智能机器学习深度学习
“DeepSeek-R1的输出,蒸馏了6个小模型”意思是利用DeepSeek-R1这个大模型的输出结果,通过知识蒸馏技术训练出6个参数规模较小的模型,以下是具体解释:-**知识蒸馏技术原理**:知识蒸馏是一种模型压缩技术,核心是“教师-学生”模式。在该场景中,DeepSeek-R1作为“教师模型”,它是一个大型、复杂且性能强大的模型,具有丰富的语言知识和出色的处理能力。以Qwen或Llama架构为
- 【开发日志】数字人+LLM:从概念到实现的全程记录!
AI大模型-王哥
大模型学习大模型教程大模型人工智能LLM数字人大模型入门
数字人是各种技术的集合,所以文章尽可能完整的介绍,项目中涉及的大小模型均可在本地部署并在我本人机器上运行。系统环境:CPU:i91490016GBGPU:GTX40608GBSYS:Windows11WSL:Ubuntu22.04本文章使用到的技术内容:数字人框架:LiveTalking大模型:Llama3.1TTS:GPT-SoVits语音转视频:Wav2Lip前端展示:WebRTC项目整体架构
- 基于 llama-index与Qwen大模型实现RAG
uncle_ll
RAGllamaragqwenllm大模型
文章目录llama-index核心功能工作流程Qwen技术特点核心能力RAG核心原理关键优势工作流程知识准备阶段查询处理阶段检索与重排阶段语言模型调用阶段实现环境准备代码实现参考LlamaIndex和Langchain都是比较成熟的RAG和Agent框架,这里基于llama实现RAG框架,大模型选用阿里的开源模型Qwen大模型。可以实现Qwen2.5与外部数据(例如文档、网页等)的连接,利用Lla
- LLM大模型中文开源数据集集锦(三)
悟乙己
付费-智能写作专栏LLM大模型开源大模型LLMGPT微调
文章目录1ChatGLM-Med:基于中文医学知识的ChatGLM模型微调1.1数据集1.2ChatGLM+P-tuningV2微调1.3Llama+Alpaca的Lora微调版本2LawGPT_zh:中文法律大模型(獬豸)2.1数据集2.1.1利用ChatGPT清洗CrimeKgAssitant数据集得到52k单轮问答:2.1.2带有法律依据的情景问答92k:2.1.3法律知识问答2.2模型3C
- 大模型参数规模解析:32B中的“B“代表什么?如何影响AI性能?
燃灯工作室
Ai人工智能
以下是优化后的技术笔记整理,包含关键知识点解析和行业应用案例:大模型参数规模解析:32B中的"B"代表什么?如何影响AI性能?一、参数单位解读B=Billion(十亿):在AI模型领域,"B"特指模型参数量的十亿级单位参数定义:神经网络中可调节的权重数值,决定模型的信息处理能力计算示例:32B=32×10⁹=320亿参数GPT-3175B=1750亿参数LLaMA-27B=70亿参数二、参数规模演
- Win7本地化部署deepseek-r1等大模型详解
mygodalien
语言模型Windows7本地化部署大模型llama
参考链接在Windows7操作系统,基于llama.cpp本地化部署deepseek-r1模型的方法2025-02-082G内存Windows7运行deepseek-r1:1.5b这两个链接写的可能不够详细,有同学私信问实现过程,这里进一步解释一下。一、准备需要准备的大模型、工具等文件,已放到网盘,可自取。网盘的figures目录是配置过程中的一些截图,可参考。百度网盘:https://pan.b
- 一杯咖啡的时间学习大模型(LLM):LLaMA解读之旋转编码RoPE(含代码实现)
Bug_makerACE
llamapython人工智能nlppytorch深度学习transformer
文章目录一、LLaMA的核心改进全景二、旋转位置编码(RoPE)2.1改进动机2.2数学原理2.3源码实现一、LLaMA的核心改进全景Meta开源的LLaMA模型凭借其卓越的性能表现成为大模型发展的重要里程碑。相较于标准Transformer架构,LLaMA主要在以下几个方面进行了关键改进:位置编码升级:采用旋转位置编码(RotaryPositionEmbedding,RoPE)归一化革新:对每个
- 自学人工智能大模型,满足7B模型的训练和微调以及推理,预算3万,如何选购电脑
岁月的眸
人工智能
如果你的预算是3万元人民币,希望训练和微调7B参数规模的人工智能大模型(如LLaMA、Mistral等),你需要一台高性能的深度学习工作站。在这个预算范围内,以下是推荐的配置:1.关键硬件配置(1)GPU(显卡)推荐显卡:NVIDIARTX4090(24GBVRAM)或者RTX3090(24GBVRAM)理由:7B模型推理:24GB显存足够跑7B模型的推理,但全参数训练可能吃力,适合LoRA等微调
- **LLAMA-CPP-PYTHON 安装与配置完全指南**
童瑶知Valda
LLAMA-CPP-PYTHON安装与配置完全指南llama-cpp-pythonPythonbindingsforllama.cpp项目地址:https://gitcode.com/gh_mirrors/ll/llama-cpp-python项目基础介绍及编程语言LLAMA-CPP-PYTHON是一个为Ggerganov开发的llama.cpp库提供简单Python绑定的开源项目。它旨在让开发者
- win10 llamafactory模型微调相关① || Ollama运行微调模型
我的巨剑能轻松搅动潮汐
llamafactory语言模型
目录微调相关1.微调结果评估2.模型下载到本地导出转换,Ollama运行1.模型转换(非常好的教程!)2.Ollama加载GGUF模型文件微调相关1.微调结果评估【06】LLaMA-Factory微调大模型——微调模型评估_llamafactory评估-CSDN博客2.模型下载到本地通义千问2.5-3B-Instruct·模型库模型的下载·文档中心导出转换,Ollama运行1.模型转换(非常好的教
- 用Llama Factory单机多卡微调Qwen2.5时报torch.OutOfMemoryError: CUDA out of memory的解决办法
蛐蛐蛐
大模型科研工具Python技巧llama人工智能大模型
接着上一篇博客:在Ubuntu上用LlamaFactory命令行微调Qwen2.5的简单过程_llamafactory微调qwen2.5-CSDN博客如果需要微调比较大的模型,例如Qwen2.5-32B,那么在两个3090上可能不够用,这里我用A6000×4的服务器。但如果仿照上篇博客,直接运行:llamafactory-clitrainexamples/train_qlora/qwen_lora
- 使用 Llama.cpp 和 llama-cpp-python 快速部署本地 LLM 模型
hgSdaegva
llamapython开发语言
在这篇技术文章中,我们将探讨如何使用llama-cpp-python(llama.cpp的Python绑定)在本地运行大语言模型(LLMs)。你将学到如何安装依赖、加载模型、调整参数以获得最佳性能,以及如何结合LangChain处理推理任务。一、技术背景介绍llama-cpp-python是llama.cpp的Python绑定,旨在简化本地运行大语言模型的过程。它支持多种LLM模型,包括可以从Hu
- DeepSeek模型架构及优化内容
开出南方的花
架构人工智能机器学习AttentionNLPpytorch深度学习
DeepSeekv1版本模型结构DeepSeekLLM基本上遵循LLaMA的设计:采⽤Pre-Norm结构,并使⽤RMSNorm函数.利⽤SwiGLU作为Feed-ForwardNetwork(FFN)的激活函数,中间层维度为8/3.去除绝对位置编码,采⽤了RoPE旋转位置编码。为了优化推理成本.67B模型使⽤分组查询注意⼒(GQA)⽽不是传统的多头注意⼒(MHA).超参数设置优化器:采⽤adam
- llama3简介与国内最快体验方式
weixin_40941102
python
Meta公司研发并推出了MetaLlama3系列大型语言模型(LLMs),该系列包括8B和70B参数量的预训练及指令调优生成文本模型。Llama3的指令调优模型专为对话场景优化设计,在行业通用基准测试中表现优于众多开源聊天模型,并且我们在开发过程中特别注重提高其有用性和安全性。模型规格:开发者:Meta变体:Llama3提供两种尺寸选择,分别是8B参数量和70B参数量的预训练版和指令调优版。输入:
- DeepSeek V3 两周使用总结
AI生成曾小健
LLM大语言模型Deepseek原理与使用人工智能
DeepSeekV3两周使用总结机器学习AI算法工程2025年01月25日10:10广西向AI转型的程序员都关注公众号机器学习AI算法工程2024年12月26日,杭州深度求索人工智能基础技术研究有限公司发布DeepSeek-V3大模型。官方宣称:(1)基于自研的MoE模型和671B参数,在14.8Ttoken上进行了预训练;(2)多项评测成绩超越了Qwen2.5-72B和Llama-3.1-405
- 关于安装llama-cpp-python报错问题解决方法
路过蜻蜓523
llamapython人工智能
ubuntu系统下安装llama-cpp-python报错在ubuntu操作系统通过pipinstallllama-cpp-python指令安装llama-cpp-python会发生如下的报错:note:Thiserrororiginatesfromasubprocess,andislikelynotaproblemwithpip.ERROR:Failedbuildingwheelforllama
- llama-cpp-python CUDA error问题
0语1言
python人工智能llamalinux
安装完cuBLAS(CUDA)版本的llama-cpp-pythonCMAKE_ARGS="-DLLAMA_CUBLAS=on"pipinstallllama-cpp-python跑模型,指定n_gpu_layers=-1出现CUDAerrorCUDAerror:theprovidedPTXwascompiledwithanunsupportedtoolchain.一个解决办法拉取llama.cp
- DeepSeek-MoE-16b:高效稀疏架构引领大模型降本增效革命
热爱分享的博士僧
架构
一、模型定位与技术背景DeepSeek-MoE-16b是深度求索(DeepSeek)研发的混合专家模型(MixtureofExperts,MoE),参数规模160亿,旨在通过稀疏化计算架构解决传统稠密模型(如Llama2、GPT-3)的高训练与推理成本问题。其设计理念为“高效激活,精准分配”,在保持模型性能的同时,显著降低算力需求,推动大模型普惠化部署。二、核心技术架构动态专家路由机制模型包含12
- 【大模型部署及其应用 】Ollama搭建运行中文大语音模型Llama3-8B-Chinese-Chat
源代码杀手
AIGC核心技术剖析人工智能深度学习llama
Ollama是一种用于运行大语言模型(如LLaMA)的平台,适合本地化部署和运行。以下是如何在Ollama上搭建和运行中文大语言模型Llama3-8B-Chinese-Chat的步骤:下载地址:https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat-GGUF-8bit项目地址:https://github.com/ymcui/Chine
- 5分钟在本地PC上使用VLLM快速启动Valdemardi/DeepSeek-R1-Distill-Llama-70B-AWQ
engchina
LINUXllamalinux人工智能VLLMdeepseek-r1
5分钟在本地PC上使用VLLM快速启动Valdemardi/DeepSeek-R1-Distill-Llama-70B-AWQ前言环境准备所需工具创建虚拟环境安装VLLM及依赖库模型下载安装HuggingFaceCLI下载DeepSeek-R1-Distill-Qwen-32B模型启动启动命令启动确认模型验证发送API请求示例输出注意事项参考链接前言VLLM是一个高效且轻量的大规模语言模型(LLM
- 【llama3.1】Ollama 下载安装指南
大表哥汽车人
人工智能大语言模型学习笔记llama
Ollama是一款强大的跨平台工具,它可以在macOS、Linux和Windows系统上运行。在这篇博文中,我们将详细介绍如何在Windows系统上下载和安装Ollama。下载Ollama首先,访问Ollama的官方网站并导航到下载页面。你会看到如下图所示的界面:步骤1:选择操作系统在下载页面,你可以看到三个操作系统选项:macOS、Linux和Windows。点击Windows选项卡。步骤2:下
- [论文笔记] llama3.2 蒸馏
心心喵
论文笔记论文阅读
参考链接:LLaMA3.2技术报告:GitHub-meta-llama/llama-stack:ModelcomponentsoftheLlamaStackAPIs[2407.21783]TheLlama3HerdofModelshttps://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/HuggingFac
- 使用 llama-cpp-python 在 LangChain 中运行 LLM 模型
qq_37836323
llamapythonlangchain
使用llama-cpp-python在LangChain中运行LLM模型引言在人工智能和自然语言处理领域,大型语言模型(LLMs)的应用越来越广泛。llama-cpp-python是一个强大的工具,它为llama.cpp提供了Python绑定,使得开发者能够在Python环境中轻松地运行各种LLM模型。本文将详细介绍如何在LangChain框架中使用llama-cpp-python,让您能够快速上
- DeepSeek创始人专访:中国的AI不可能永远跟随,需要有人站到技术的前沿
人工智能学家
人工智能
来源:FounderPark因为V3版本开源模型的发布,DeepSeek又火了一把,而且这一次,是外网刷屏。训练成本估计只有Llama3.1405B模型的11分之一,后者的效果还不如它。在多项测评上,DeepSeekV3达到了开源SOTA,超越Llama3.1405B,能和GPT-4o、Claude3.5Sonnet等TOP模型正面掰掰手腕——而其价格比Claude3.5Haiku还便宜,仅为Cl
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag