大数据学习05-Kafka分布式集群部署

系统环境:centos7
软件版本:jdk1.8、zookeeper3.4.8、hadoop2.8.5
本次实验使用版本 kafka_2.12-3.0.0

一、安装

Kafka官网
大数据学习05-Kafka分布式集群部署_第1张图片

将安装包上传至linux服务器上
大数据学习05-Kafka分布式集群部署_第2张图片
解压

tar -zxvf kafka_2.12-3.0.0.tgz -C /home/local/

移动目录至kafka

mv kafka_2.12-3.0.0/ kafka

二、部署

配置Kafka环境

vi /etc/profile

添加如下配置

#kafka
export KAFKA_HOME=/home/local/kafka
export PATH=$PATH:${KAFKA_HOME}/bin

修改server.properties文件

vim /home/local/kafka/config/server.properties

修改参数如下:

broker.id=0
listeners=PLAINTEXT://192.168.245.200:9092
log.dirs=/tmp/kafka-logs
zookeeper.connect=192.168.245.200:2181,192.168.245.201:2181,192.168.245.202:2181

参数说明:
broker.id : 集群内全局唯一标识,每个节点上需要设置不同的值
listeners:这个IP地址也是与本机相关的,每个节点上设置为自己的IP地址
log.dirs :存放kafka消息的
zookeeper.connect : 配置的是zookeeper集群地址

分发kafka安装目录

for i in {1..2};do scp -r /home/local/kafka root@slave${i}:/home/local/;done

三、启动

进入kafka安装目录下

./bin/kafka-server-start.sh ./config/server.properties &

kafka相关命令


创建topic
kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 --topic test

显示所有topic
kafka-topics.sh --list --bootstrap-server localhost:9092

产生消息
kafka-console-producer.sh --broker-list localhost:9092 --topic test

消费消息
kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning

删除topic
kafka-topics.sh --delete --bootstrap-server localhost:9092 --topic test

四、flink与kafka结合示例

首先 ,构建maven工程,加入flink与kafka的一些依赖:




    4.0.0

    org.example
    bigdata-kafka_2.12-3.0.0
    1.0-SNAPSHOT

    bigdata-kafka_2.12-3.0.0
    
    http://www.example.com

    
        UTF-8
        1.8
        1.8
        1.14.0
        2.11.2

    

    
        
            org.apache.flink
            flink-java
            ${flink-version}
        
        
            org.apache.flink
            flink-streaming-java_2.11
            ${flink-version}
        
        
            org.apache.flink
            flink-clients_2.11
            ${flink-version}
        
        
            org.apache.flink
            flink-connector-kafka_2.11
            ${flink-version}
        
        
            junit
            junit
            4.11
            test
        
    


第一个,flink生产者示例代码:

package com.example;

import org.apache.commons.lang3.RandomStringUtils;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;

import java.io.Serializable;
import java.util.Properties;

public class KafkaProducerExample {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "192.168.245.200:9092");
        DataStream<String> stream = env.addSource(new SimpleStringGenerator());
        stream.addSink(new FlinkKafkaProducer<String>("test", new SimpleStringSchema(), props));
        env.execute();
    }
}


class SimpleStringGenerator implements SourceFunction<String>, Serializable {
    private static final long serialVersionUID = 1L;
    private volatile boolean isRunning = true;

    @Override
    public void run(SourceContext<String> ctx) throws Exception {
        while (isRunning) {
            String str = RandomStringUtils.randomAlphanumeric(5);
            ctx.collect(str);
            Thread.sleep(1000);
        }
    }

    @Override
    public void cancel() {
        isRunning = false;
    }
}

因为flink是生产者,需要启动一个kafka的消费者终端,然后运行本示例:
启动kafka

bin/kafka-server-start.sh config/server.properties &

启动一个kafka的消费者终端

bin/kafka-console-consumer.sh --bootstrap-server master:9092 --topic test

终端内容
大数据学习05-Kafka分布式集群部署_第3张图片
第二个,flink消费者示例代码:

package com.example;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.Properties;

public class KafkaConsumerApp {
    public static void main(String[] args) {
        try {
            final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            Properties properties = new Properties();
            properties.setProperty("bootstrap.servers", "master:9092");
            properties.setProperty("group.id", "flink");
            DataStream<String> stream = env.addSource(new FlinkKafkaConsumer<String>("test", new SimpleStringSchema(), properties));
            stream.map(new MapFunction<String, Object>() {
                @Override
                public Object map(String value) throws Exception {
                    return "flink: " + value;
                }
            }).print();
            env.execute("consumer");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

为了测试,我们先开启一个生产者,不断往kafka中发送消息。

 kafka-console-producer.sh --broker-list master:9092 --topic test

终端
大数据学习05-Kafka分布式集群部署_第4张图片

控制台
大数据学习05-Kafka分布式集群部署_第5张图片
打印结果符合预期,flink与kafka结合的示例就演示完成了,主要的还是熟悉flink编程。

你可能感兴趣的:(大数据,分布式,大数据,学习)