Unique Paths II ——LeetCode

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[

  [0,0,0],

  [0,1,0],

  [0,0,0]

]

The total number of unique paths is 2.

Note: m and n will be at most 100.

跟上一个题类似。

题目大意:左上走到右下,1表示障碍,0表示路,问有多少种唯一的走法。

解题思路:简单的动规,F(i,j)=F(i-1,j)+F(i,j-1),如果grid[i][j]==1,那么F(i,j)=0。

public class Solution {

    public int uniquePathsWithObstacles(int[][] og) {

        if(og==null||og[0].length==0||og[0][0]==1){

            return 0;

        }

        int m = og.length,n=og[0].length;

        int[][] cnt = new int[m][n];

        cnt[0][0]=1;

        for(int i=0;i<m;i++){

            for(int j=0;j<n;j++){

                if((i==0&&j==0)||og[i][j]==1){

                    continue;

                } else if(i==0&&j!=0){

                    cnt[i][j]=cnt[i][j-1];

                } else if(j==0&&i!=0){

                    cnt[i][j]=cnt[i-1][j];

                } else {

                    cnt[i][j]=cnt[i-1][j]+cnt[i][j-1];

                }

            }

        }

        return cnt[m-1][n-1];

    }

}

 

你可能感兴趣的:(LeetCode)