【数据结构和算法15】二叉树的实现

二叉树是这么一种树状结构:每个节点最多有两个孩子,左孩子和右孩子

重要的二叉树结构

  • 完全二叉树(complete binary tree)是一种二叉树结构,除最后一层以外,每一层都必须填满,填充时要遵从先左后右

  • 平衡二叉树(balance binary tree)是一种二叉树结构,其中每个节点的左右子树高度相差不超过 1

1、存储

存储方式分为两种

  1. 定义树节点与左、右孩子引用(TreeNode)

  2. 使用数组,前面讲堆时用过,若以 0 作为树的根,索引可以通过如下方式计算

    • 父 = floor((子 - 1) / 2)

    • 左孩子 = 父 * 2 + 1

    • 右孩子 = 父 * 2 + 2

二叉树的节点结构

/**
 * 二叉树节点
 *
 * @author zjj_admin
 */
public class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
​
    public TreeNode(int val) {
        this.val = val;
    }
​
    public TreeNode(TreeNode left, int val, TreeNode right) {
        this.left = left;
        this.val = val;
        this.right = right;
    }
}

2、遍历

遍历也分为两种

  1. 广度优先遍历(Breadth-first order):尽可能先访问距离根最近的节点,也称为层序遍历

  2. 深度优先遍历(Depth-first order):对于二叉树,可以进一步分成三种(要深入到叶子节点)

    1. pre-order 前序遍历,对于每一棵子树,先访问该节点,然后是左子树,最后是右子树

    2. in-order 中序遍历,对于每一棵子树,先访问左子树,然后是该节点,最后是右子树

    3. post-order 后序遍历,对于每一棵子树,先访问左子树,然后是右子树,最后是该节点

2.1、广度优先

【数据结构和算法15】二叉树的实现_第1张图片

 

本轮开始时队列 本轮访问节点
[1] 1
[2, 3] 2
[3, 4] 3
[4, 5, 6] 4
[5, 6] 5
[6, 7, 8] 6
[7, 8] 7
[8] 8
[]
  1. 初始化,将根节点加入队列

  2. 循环处理队列中每个节点,直至队列为空

  3. 每次循环内处理节点后,将它的孩子节点(即下一层的节点)加入队列

注意

  • 以上用队列来层序遍历是针对 TreeNode 这种方式表示的二叉树

  • 对于数组表现的二叉树,则直接遍历数组即可,自然为层序遍历的顺序

2.2、深度优先遍历

深度优先遍历有前序遍历、中序遍历和后续遍历三种

  1. 前序遍历: 先输出父节点,再遍历左子树和右子树

  2. 中序遍历: 先遍历左子树,再输出父节点,再遍历右子树

  3. 后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点

  • 小结: 看输出父节点的顺序,就确定是前序,中序还是后序

前,中,后序遍历详解

  1. 创建一颗二叉树

  2. 前序遍历 2.1 先输出当前节点(初始的时候是root节点) 2.2 如果左子节点不为空,则递归继续前序遍历 2.3 如果右子节点不为空,则递归继续前序遍历

  3. 中序遍历 3.1 如果当前节点的左子节点不为空,则递归中序遍历 3.2 输出当前节点 3.3 如果当前节点的右子节点不为空,则递归中序遍历

  4. 后序遍历 4.1 如果当前节点的左子节点不为空,则递归后序遍历 4.2 如果当前节点的右子节点不为空,则递归后序遍历 4.3 输出当前节点

2.3、递归实现深度优先遍历

/**
 * 前序遍历,继续递归实现
 *
 * @param root
 */
static void preOrder(TreeNode root) {
    if (root == null) {
        return;
    }
    System.out.print(root.val + "\t");
    preOrder(root.left);
    preOrder(root.right);
}
​
​
/**
 * 中序遍历
 *
 * @param root
 */
static void inOrder(TreeNode root) {
    if (root == null) {
        return;
    }
    inOrder(root.left);
    System.out.print(root.val + "\t");
    inOrder(root.right);
}
​
​
/**
 * 后续遍历
 *
 * @param root
 */
static void postOrder(TreeNode root) {
    if (root == null) {
        return;
    }
    postOrder(root.left);
    postOrder(root.right);
    System.out.print(root.val + "\t");
}

2.4、非递归实现深度优先遍历

   /**
     * 前序遍历
     * 使用非递归的方式
     *
     * @param root
     */
    static String preOrder(TreeNode root) {
        LinkedList stack = new LinkedList();
        StringBuilder res = new StringBuilder();
        TreeNode curr = root;
        while (curr != null || !stack.isEmpty()) {
            if (curr != null) {
                res.append(curr.val).append(" ");
                stack.push(curr);
                curr = curr.left;
            } else {
                //弹栈
                TreeNode pop = stack.pop();
                curr = pop.right;
            }
        }
        return res.toString();
    }
​
​
    /**
     * 中序遍历
     * 使用非递归的方式
     *
     * @param root
     */
    static String inOrder(TreeNode root) {
        LinkedList stack = new LinkedList();
        StringBuilder res = new StringBuilder();
        TreeNode curr = root;
        while (curr != null || !stack.isEmpty()) {
            if (curr != null) {
                stack.push(curr);
                curr = curr.left;
            } else {
                //弹栈
                TreeNode pop = stack.pop();
                res.append(pop.val).append(" ");
                curr = pop.right;
            }
        }
        return res.toString();
    }
​
​
    /**
     * 后续遍历
     * 使用非递归的方式
     *
     * @param root
     */
    static String postOrder(TreeNode root) {
        LinkedList stack = new LinkedList();
        StringBuilder res = new StringBuilder();
        TreeNode curr = root;
        TreeNode pop = null;
        while (curr != null || !stack.isEmpty()) {
            if (curr != null) {
                stack.push(curr);
                curr = curr.left;
            } else {
                TreeNode peek = stack.peek();
                if (peek.right == null || peek.right == pop) {
                    //弹栈
                    pop = stack.pop();
                    res.append(pop.val).append(" ");
                } else {
                    curr = peek.right;
                }
            }
        }
        return res.toString();
    }

2.5、在一个方法中实现二叉树的三种深度优先遍历(前序、中序和后续)

/**
 * 使用非递归的方式求解,在一个方法中实现
 * 实现前序遍历,中序遍历和后续遍历
 *
 * @param root
 */
static List order(TreeNode root) {
    TreeNode curr = root;
    StringBuilder pre = new StringBuilder("preOrder:");
    StringBuilder in = new StringBuilder("inOrder:");
    StringBuilder post = new StringBuilder("postOrder:");
    //定义一个栈,用于存储当前节点的父节点
    LinkedList s = new LinkedList();
    TreeNode pop = null;
    while (curr != null || !s.isEmpty()) {
        if (curr != null) {
            s.push(curr);
            pre.append(curr.val + " ");
            //依次向左边遍历
            curr = curr.left;
        } else {
            TreeNode peek = s.peek();
            if (peek.right == null) {
                in.append(peek.val + " ");
                //当没有右节点时
                pop = s.pop();
                //这一行打印的是中序遍历的结果
                post.append(pop.val + " ");
            } else if (peek.right == pop) {
                //当右节点已经遍历结束时
                pop = s.pop();
                //这一行打印的是中序遍历的结果
                post.append(pop.val + " ");
            } else {
                //右节点不为空并且没有遍历
                in.append(peek.val + " ");
                curr = peek.right;
            }
        }
    }
    return List.of(pre.toString(), in.toString(), post.toString());
}

你可能感兴趣的:(满老师小课堂,算法,数据结构,深度优先)