- 在Python中,我们可以使用第三方库来实现将数据导出到Excel的功能
pytorchCode
pythonexcellinuxPython
在Python中,我们可以使用第三方库来实现将数据导出到Excel的功能。其中,最常用的库之一是openpyxl。这个库提供了丰富的功能,可以创建、修改和保存Excel文件。下面我将为您提供一个简单的示例,展示如何使用openpyxl库将数据导出到Excel。首先,我们需要安装openpyxl库。可以使用以下命令通过pip安装它:pipinstallopenpyxl安装完成后,我们就可以开始编写代
- ARINC429协议分析
Eidolon_li
FPGAfpga开发
描述本章内容主要说明ARINC429协议分析方法,包含429数据模型,以及各模型的含义协议模型定义如下表所示,ARINC429在发送一帧过程中,首先发送以START开始,以END结束,共发送32bits数据,其中0~7bits为Lable数据,9~8bits为SDI数据,10~28bits为数据,29~30bits为SSM,31bit为校验位End30292827262524校验位SSMDATA(
- 2025年编程AI工具概览
hawkol
人工智能
随着人工智能技术的飞速发展,编程AI工具在2025年已成为程序员和开发者的得力助手。这些工具不仅提高了编程效率,还在代码质量、自动化和创新性方面表现出显著优势。以下是一些在2025年备受推崇的编程AI工具:1.GitHubCopilotGitHubCopilot是由GitHub、OpenAl和Microsoft联合打造的一款高级代码生成和辅助工具。它基于OpenAl的Codex模型,能够理解自然语
- Web-3.0学习路线
奶龙牛牛
web3
方向学习内容✅区块链基础区块链、智能合约、共识机制✅智能合约Solidity/Rust(Ethereum/Solana)✅前端React.js,Next.js,Web3.js,ethers.js✅后端Node.js,Python,Golang(链上数据)✅存储IPFS,Arweave,Filecoin(去中心化存储)✅交互MetaMask,WalletConnect(钱包)如果你是前端开发Reac
- 运用python爬虫爬取汽车网站图片并下载,几个汽车网站的示例参考
大懒猫软件
python爬虫汽车图像处理
当然,以下是一些常见的汽车网站及其爬虫示例代码,展示如何爬取汽车图片并下载。请注意,爬取网站内容时应遵守网站的使用协议和法律法规,避免对网站造成不必要的负担。示例1:爬取汽车之家图片网站地址汽车之家爬虫代码Python复制importrequestsfrombs4importBeautifulSoupimportosdefdownload_images(url,folder):ifnotos.pa
- Huffman编码的Python的实现
childish_tree
python算法霍夫曼树数据压缩
Huffman编码的Python的实现基本原理及步骤Huffman编码是一种贪心算法,用于无损数据压缩。它基于字符在数据中出现的频率来构建编码,频率高的字符使用较短的编码,而频率低的字符使用较长的编码。这种方式的目的是减少数据的大小,因为最常见的字符使用最短的编码,从而在整体上减少了所需的位数。实现Huffman编码的原理如下:频率统计:如果输入数据是一个字符串,代码会遍历这个字符串,统计每个字符
- Gurobi基础语法之addVar 和 addVars
Smark.
gurobi
addVar和addVars作为Gurobi模型对象中的方法,常常用来生成变量,本文介绍了Python中的这两个接口的使用addVaraddVar(lb=0.0,ub=float('inf'),obj=0.0,vtype=GRB.CONTINUOUS,name='',column=None)lb和ub让变量在生成的时候就有下界和上届,obj确定了生成的变量在目标函数的系数的取值vtype确定了变量
- AI真的能理解我们这个现实物理世界吗?深度剖析原理、实证及未来走向
AI_DL_CODE
人工智能深度学习AIAI理解世界
摘要:当下,AI与深度学习广泛渗透生活各领域,大模型与海量数据加持下,其是否理解现实物理世界引发热议。文章开篇抛出疑问,随后深入介绍AI深度学习基础,包含神经网络架构、反向传播算法。继而列举AI在物理场景识别、实验数据分析中显露的“理解”迹象,也点明常识性错误、极端场景失效这类反例。从信息论、物理启发式算法剖析理论支撑,探讨融合物理知识路径,并延展至跨学科应用、评估维度、伦理社会问题,最终展望AI
- 攻克设备数据质量难题:深度学习应用的数据基石搭建教程(DBSCAN 聚类算法)
AI_DL_CODE
深度学习运维算法数据质量DBSCAN聚类算法
摘要:在深度学习赋能设备管理的浪潮中,数据质量成为关键瓶颈。本文聚焦设备数据采集与预处理阶段面临的噪声干扰、数据缺失等难题,深入讲解强化采集端管控的策略,详细剖析聚类、统计法及线性回归模型在数据清洗与补全中的应用原理,并结合振动传感器数据实例给出可实操的Python代码。旨在为从业者提供一站式解决方案,助力打造高质量设备数据集,为深度学习模型高效运行筑牢根基,推动设备管理智能化落地。文章目录攻克设
- 人工智能在药物研发中的应用 - 从靶点发现和化合物筛选:利用AI深度学习技术加速药物研发流程
AI_DL_CODE
人工智能深度学习药物研发deeplearning
摘要:本文探讨了人工智能(AI)在药物研发中的应用,强调了AI在加速药物发现、降低成本和提高成功率方面的重要性。文章概述了AI在药物靶点识别、化合物筛选、药物设计优化等方面的应用,并详细介绍了机器学习和深度学习的基本原理。通过一个实操案例,展示了如何利用AI技术对化合物数据进行分析,预测潜在的药物候选物。案例包括数据预处理、模型训练、评估和优化等步骤,证明了AI在提高药物研发效率和准确性方面的潜力
- pytorch实现循环神经网络
纠结哥_Shrek
pytorchrnn深度学习
人工智能例子汇总:AI常见的算法和例子-CSDN博客PyTorch提供三种主要的RNN变体:nn.RNN:最基本的循环神经网络,适用于短时依赖任务。nn.LSTM:长短时记忆网络,适用于长序列数据,能有效解决梯度消失问题。nn.GRU:门控循环单元,比LSTM计算更高效,适用于大部分任务。网络类型优势适用场景RNN计算简单,适用于短时序列语音、文本处理(短序列)LSTM适用于长序列,能记忆长期信息
- BFS中的双向广搜和A-star
ZZTC
算法宽度优先算法
双向广搜双向广搜一般用于最小步数模型双向搜索,就是在起点搜索的过程,终点也在往回搜,从而达到优化的效果。普通搜索:(绿色点为终点)双向搜索:大家可以发现,双向搜索的大小非常小,所以已知起点和终点状态的搜索尽量用双向搜索。190.字串变换已知有两个字串AAA,BBB及一组字串变换的规则(至多666个规则):A1→B1A_1→B_1A1→B1A2→B2A_2→B_2A2→B2…规则的含义为:在AAA中
- Python差分
ZZTC
Pythonpython开发语言蓝桥杯
差分数组对于一个数组a[]a[]a[],差分数组diff[]diff[]diff[]的定义是:diff[i]=a[i]−a[i−1]diff[i]=a[i]-a[i-1]diff[i]=a[i]−a[i−1]对差分数组做前缀和可以还原为原数组:diff[1]+diff[2]+diff[3]+...+diff[i]=a[1]+(a[2]−a[1])+(a[3]−a[2])+...+(a[i]−a[i
- YOLOv10改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力
Limiiiing
YOLOv10改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文主要利用GOLD-YOLO中的颈部结构优化YOLOv10的网络模型。GOLD-YOLO颈部结构中的GD机制借鉴了全局信息融合的理念,通过独特的模块设计,在不显著增加延迟的情况下,高效融合不同层级的特征信息。将其应用于YOLOv10的改进过程中,能够使模型更有效地整合多尺度特征,减少信息损失,强化对不同大小目标物体的特征表达,从而提升模型在复杂场景下对目标物体的检测精度与定位准确性。
- YOLOv10改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
Limiiiing
YOLOv10改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文将HS-FPN结构融入YOLOv10以优化目标检测网络模型。HS-FPN借助通道注意力机制及独特的多尺度融合策略,有效应对目标尺寸差异及特征稀缺问题。在YOLOv10中应用HS-FPN时,其利用高级特征筛选低级特征,增强特征表达,助力模型精准定位和识别目标,减少因尺度变化及特征不足导致的检测误差,显著提升YOLOv10在各项检测任务中的准确性与稳定性。专栏目录:YOLOv10改进目
- PyTorch 官方文档 中文版本
圣心
pytorch机器学习
文档来源https://pytorch.cadn.net.cn大多数机器学习工作流都涉及处理数据、创建模型、优化模型参数,并保存经过训练的模型。本教程向您介绍完整的ML工作流在PyTorch中实现,并提供了用于了解有关每个概念的更多信息的链接。我们将使用FashionMNIST数据集来训练一个神经网络,该神经网络预测输入图像是否属于到以下类别之一:T恤/上衣、裤子、套头衫、连衣裙、外套、凉鞋、衬衫
- deepseek R1 14b显存占用
容沁风
deepseekrtx2080ti
RTX2080ti11G显卡,模型7b速度挺快,试试14B也不错。7B显存使用5.6G,14B显存刚好够,出文字速度差不多。打算自己写个移动宽带的IPTV播放器,不知道怎么下手,就先问他了。
- 使用Transformer模型实现股票走势预测:深入解析和实操案例(基于Python和PyTorch)
AI_DL_CODE
pythontransformerpytorch股票预测
摘要:本文讨论了Transformer模型在股票市场预测中的应用,突出其自注意力机制在捕捉长期趋势和周期性变化方面的优势。文章详细介绍了模型理论、架构,并分析了其在股价预测中的优势和挑战。通过实操案例,展示了如何使用Python和PyTorch进行模型构建、训练和评估,包括数据预处理和性能评价。结果证实Transformer模型能有效预测股价,但需注意过拟合和数据量问题。未来研究将着眼于模型优化和
- PYTHON 常用算法 33个
trust Tomorrow
python算法python排序算法
文章目录冒泡排序(BubbleSort)选择排序(SelectionSort)插入排序(InsertionSort)快速排序(QuickSort)归并排序(MergeSort)堆排序(HeapSort)计数排序(CountingSort)基数排序(RadixSort)桶排序(BucketSort)希尔排序(ShellSort)二分查找(BinarySearch)线性查找(LinearSearch)
- CSS 图像、媒体和表单元素的样式化指南
engchina
LINUXcss前端
CSS图像、媒体和表单元素的样式化指南1.替换元素:图像和视频1.1调整图像大小示例代码:调整图像大小1.2使用`object-fit`控制图像显示示例代码:使用`object-fit`2.布局中的替换元素示例代码:Grid布局中的图像3.表单元素的样式化3.1样式化文本输入元素示例代码:样式化文本输入3.2表单元素的继承和盒模型示例代码:表单元素的继承和盒模型4.总结完整示例代码在网页设计中,图
- [250125] DeepSeek 发布开源大模型 R1,性能比肩 OpenAI o1 | 希捷推出高达 36TB 的硬盘
x-cmd
dailyblog开源deepseekllmopenaiai硬件存储
DeepSeek发布开源大模型R1,性能比肩OpenAIo1DeepSeek正式发布了DeepSeek-R1大模型,并同步开源了模型权重,其性能对标OpenAIo1正式版。主要亮点:开源模型,MIT许可证:DeepSeek-R1遵循MITLicense,允许用户自由使用、修改、分发,甚至商用,并允许通过蒸馏技术基于R1训练其他模型。API开放调用:用户可以通过DeepSeekAPI调用R1模型,设
- Python绘图实例:太极图
程序员林
python
这里写自定义目录标题1.太极图含义实例代码运行结果1.太极图含义所谓太极即是阐明宇宙从无极而太极,以至万物化生的过程。其中的太极即为天地未开、混沌未分阴阳之前的状态。易经系辞:“是故易有太极,是生两仪”。两仪即为太极的阴、阳二仪。太极图式说是《庄子》"太极"思想在儒、道两家结出的硕果。实例代码importturtle#导入turtle库turtle.speed(10)#画笔移动速度turtle.c
- python自动下载阿里云数据库数据_阿里云数据库Redis备份下载(Python)
weixin_39844426
#!/usr/bin/envpython3.6#coding=utf-8importosimporturllib.request,json,datetime,timeimportsslfromaliyunsdkcore.clientimportAcsClientfromaliyunsdkr_kvstore.request.v20150101.DescribeBackupsRequestimport
- Python:动态粒子爱心
百年孤独_
计算机趣事随心所欲不逾矩pythonpygame开发语言
预览代码结构概述这段代码使用了pygame库来创建一个动态的图形窗口,绘制一个心形图案,并在其中显示闪烁的文本。代码主要分为以下几个部分:初始化和设置心形曲线的计算粒子类的定义生成粒子文本设置主循环1.初始化和设置importpygameimportrandomimportmathimportos#初始化pygamepygame.init()#屏幕尺寸WIDTH,HEIGHT=800,600scr
- 30天Python入门(第十四天:深入了解Python中的高阶函数))
prince_zxill
Python实战教程python开发语言vscode教程高阶函数
30天Python入门(第十四天:深入了解Python中的高阶函数)高阶函数作为参数的函数作为返回值的函数Python闭包Python装饰器创建装饰器将多个装饰器应用于单个函数在装饰器函数中接受参数内置高阶函数Python-map函数Python-Filter函数Python-Reduce函数小结练习:1级练习:2级高阶函数在Python中,函数被视为“一等公民”,您可以对函数执行以下操作:一个函
- 跟我一起学 Python 数据处理(六):Python 数据类型深度剖析与容器初窥
lilye66
python开发语言tornadobeautifulsouppandasmatplotlib
跟我一起学Python数据处理(六):Python数据类型深度剖析与容器初窥在Python学习的漫漫长路中,我们已经成功迈出了几步,对其环境搭建和基础操作有了一定了解。接下来,让我们继续深入,探寻Python丰富的数据类型世界以及强大的数据容器,进一步挖掘Python在数据处理方面的潜力,一同在知识的海洋中破浪前行。一、整数与字符串的微妙差异及应用场景整数,在Python中如同数学世界里的整数一样
- 跟我一起学 Python 数据处理(三十一):攻克 PDF 数据采集中的难题
lilye66
pythonpdf数据库beautifulsoup
跟我一起学Python数据处理(三十一):攻克PDF数据采集中的难题在数据处理的征程中,我们不断探索与成长。本文继续以Python处理PDF数据为主题,深入剖析其中复杂问题的解决之道,旨在与大家携手提升Python数据处理能力,共同跨越重重难关。一、数据采集问题剖析在处理PDF文本数据时,常遭遇诸多棘手状况。如文中处理国家相关数据时,双行国家名称对应的数值采集出现错误。查看源数据发现,双行国家对应
- 跟我一起学 Python 数据处理(一):入门篇
lilye66
pythonplotlynumpypandasmatplotlibconda
跟我一起学Python数据处理(一):入门篇在当今数字化时代,数据处理能力变得愈发关键。无论是从事新闻、分析工作,还是立志成为数据科学家,掌握数据处理技巧都能让我们从海量信息中提取有价值的内容,并以清晰、有说服力的方式呈现出来。Python作为一门强大且应用广泛的编程语言,在数据处理领域占据着重要地位。本文将开启Python数据处理的学习之旅,与大家一同探索其中的奥秘,共同进步。一、确定研究主题与
- 跟我一起学 Python 数据处理(四):Python 基础环境深度剖析与工具安装
lilye66
pythonflaskpandasscrapybeautifulsoup
跟我一起学Python数据处理(四):Python基础环境深度剖析与工具安装在Python学习之旅中,我们已经迈出了搭建环境的关键第一步。今天,我们继续深入探索,让大家对Python基础环境有更透彻的理解,并顺利安装必备的工具,为后续高效的数据处理学习筑牢根基。一、Python提示符与系统提示符的奥秘当我们成功启动Python后,会看到>>>这个Python提示符,它就像是进入Python世界的大
- Python数据处理(一):处理 JSON、XML、CSV 三种格式数据
solocoder222
Pythonpython数据处理CodeRiver
Python数据处理系列博客来啦!本系列将以《Python数据处理》这本书为基础,以书中每章一篇博客的形式带大家一起学习Python数据处理。书中有些地方讲的不太详细,我会查阅其他资料来补充,力争每篇博客都把知识点涵盖全且通俗易懂。这本书主要讲了如何用Python处理各种类型的文件,如JSON、XML、CSV、Excel、PDF等。后面几章还会讲数据清洗、网页抓取、自动化和规模化等使用技能。我也是
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo