协程不是计算机提供的(计算机提供线程和进程),是程序员人为创造的。
协程(Coroutine),也可以被称为微线程,是一种用户态内的上下文切换技术,简而言之,就是通过一个线程实现代码块相互切换执行。例如:
def func1():
print(1)
...
print(2)
def func2():
print(3)
...
print(4)
func1()
func2()
一般思路先执行func1,再执行func2
协程会让两个函数来回切换
实现协程方法:
pip install greenlet
from greenlet import greenlet
def func1():
print(1) # 第2步:输出1
gr2.switch() # 第3步:切换到func2函数
print(2) # 第6步:输出2
gr2.switch() # 第7步:切换到func2函数,从上一次执行的位置继续向后执行
def func2():
print(3) # 第4步:输出3
gr1.switch() # 第5步:切换到func1函数,从上一次执行的位置继续向后执行
print(4) # 第8步:输出4
gr1 = greenlet(func1)
gr2 = greenlet(func2)
gr1.switch # 第1步:去执行func1函数
def func1():
yield 1
yield from func2()
yield 2
def func2():
yield 3
yield 4
f1 = func1()
for item in f1:
print(item)
python3.4及之后版本
import asyncio
@asyncio.coroutine # 加上装饰器可以理解为普通函数成为协程函数
def func1():
print(1)
yield from asyncio.sleep(2) # 遇到IO耗时操作,自动切换到tasks中的其他任务
print(2)
@asyncio.coroutine
def func2():
print(3)
yield from asyncio.sleep(2) # 遇到IO耗时操作,自动切换到tasks中的其他任务
print(4)
# 协程函数不能直接func1()执行,通过以下方式执行
# loop = asyncio.get_event_loop()
# loop.run_until_complete(func1())
tasks = [
asyncio.ensure_future(func1()),
asyncio.ensure_future(func2())
]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
python3.5及之后版本
import asyncio
async def func1(): # async关键字替换修饰器
print(1)
await asyncio.sleep(2) # await关键字替换yield from
print(2)
async def func2():
print(3)
await asyncio.sleep(2) # 遇到IO耗时操作,自动切换到tasks中的其他任务
print(4)
tasks = [
asyncio.ensure_future(func1()),
asyncio.ensure_future(func2())
]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
在一个线程中如果遇到IO等待时间,线程不会一直等待,利用空闲时间做其他事情。
案例:下载三张图片(网络IO)
""" pip install requests """
import requests
def download_image(url):
print("开始下载:",url)
# 发送网络请求,下载图片
response = requests.get(url)
print("下载完成")
# 图片保存到本地文件
file_name = url.rsplit('_')[-1]
with open(file_name, mode='wb') as file_object:
file_object.write(response.content)
if __name__ == '__main__':
url_list = [
'https://c-ssl.duitang.com/uploads/blog/202110/26/20211026141603_cb6eb.jpg',
'https://c-ssl.duitang.com/uploads/blog/202110/22/20211022063257_4b93d.jpg',
'https://c-ssl.duitang.com/uploads/blog/202109/21/20210921165524_d1074.jpg'
]
for item in url_list:
download_image(item)
"""
下载图片使用第三方模块aiohttp,请提前安装:pip install aiohttp
"""
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import aiohttp
import asyncio
async def fetch(session, url):
print("开始下载:", url)
async with session.get(url, verify_ssl=False) as response:
content = await response.content.read()
file_name = url.rsplit('_')[-1]
with open(file_name, mode='wb') as file_object:
file_object.write(content)
print('下载完成')
async def main():
async with aiohttp.ClientSession() as session:
url_list = [
'https://c-ssl.duitang.com/uploads/blog/202110/26/20211026141603_cb6eb.jpg',
'https://c-ssl.duitang.com/uploads/blog/202110/22/20211022063257_4b93d.jpg',
'https://c-ssl.duitang.com/uploads/blog/202109/21/20210921165524_d1074.jpg'
]
tasks = [asyncio.create_task(fetch(session, url)) for url in url_list]
await asyncio.wait(tasks)
if __name__ == '__main__':
asyncio.run(main())
可以理解成为一个死循环,去检测执行某些代码
# 伪代码
任务列表 = [ 任务1, 任务2, 任务3,... ]
while True:
可执行的任务列表,已完成的任务列表 = 去任务列表中检查所有的任务,将'可执行'和'已完成'的任务返回
for 就绪任务 in 已准备就绪的任务列表:
执行已就绪的任务
for 已完成的任务 in 已完成的任务列表:
在任务列表中移除 已完成的任务
如果 任务列表 中的任务都已完成,则终止循环
import asyncio
# 生成或获取一个事件循环
loop = asyncio.get_event_loop()
# 将任务放到任务列表
loop.run_until_complete(任务)
协程函数:定义形式为 async def
的函数
协程对象:调用 协程函数 返回的对象
# 定义一个协程函数
async def func():
pass
# 调用协程函数,返回一个协程对象(result)
result = func() # 创建一个协程对象,内部代码不会执行
运行协程函数内部代码必须将协程对象交给事件循环处理
import asyncio
async def func():
print("协程内部代码")
# 调用协程函数,返回一个协程对象。
result = func()
# 方式一
# loop = asyncio.get_event_loop() # 创建一个事件循环
# loop.run_until_complete(result) # 将协程当做任务提交到事件循环的任务列表中,协程执行完成之后终止。
# 方式二
# 本质上方式一是一样的,内部先 创建事件循环 然后执行 run_until_complete,一个简便的写法。
# asyncio.run 函数在 Python 3.7 中加入 asyncio 模块,
asyncio.run(result)
await + 可等待的对象(协程对象、Future、Task对象 -> IO等待)
示例一:
import asyncio
async def func():
print("执行协程函数内部代码")
# 遇到IO操作挂起当前协程(任务),等IO操作完成之后再继续往下执行。
# 当前协程挂起时,事件循环可以去执行其他协程(任务)。
response = await asyncio.sleep(2)
print("IO请求结束,结果为:", response)
result = func()
asyncio.run(result)
示例二:
import asyncio
async def others():
print("start")
await asyncio.sleep(2)
print('end')
return '返回值'
async def func():
print("执行协程函数内部代码")
# 遇到IO操作挂起当前协程(任务),等IO操作完成之后再继续往下执行。当前协程挂起时,事件循环可以去执行其他协程(任务)。
response = await others()
print("IO请求结束,结果为:", response)
asyncio.run( func() )
示例三:
import asyncio
async def others():
print("start")
await asyncio.sleep(2)
print('end')
return '返回值'
async def func():
print("执行协程函数内部代码")
# 遇到IO操作挂起当前协程(任务),等IO操作完成之后再继续往下执行。当前协程挂起时,事件循环可以去执行其他协程(任务)。
response1 = await others()
print("IO请求结束,结果为:", response1)
response2 = await others()
print("IO请求结束,结果为:", response2)
asyncio.run( func() )
await 等待对象的值返回后再继续执行
Tasks are used to schedule coroutines concurrently.
When a coroutine is wrapped into a Task with functions like
asyncio.create_task()
the coroutine is automatically scheduled to run soon。
在事件循环中添加多个任务
Tasks用于并发调度协程,通过
asyncio.create_task
(协程对象)的方式创建Task对象,这样可以让协程加入事件循环中等待被调度执行。除了使用asyncio.create_task()
函数以外,还可以用低层级的loop.create_task()
或ensure_future()
函数。不建议手动实例化 Task 对象。
注意:asyncio.create_task()
函数在 Python 3.7 中被加入。在 Python 3.7 之前,可以改用低层级的 asyncio.ensure_future()
函数。
示例一:
import asyncio
async def func():
print(1)
await asyncio.sleep(2)
print(2)
return "返回值"
async def main():
print("main开始")
# 创建协程,将协程封装到一个Task对象中并立即添加到事件循环的任务列表中,等待事件循环去执行(默认是就绪状态)。
task1 = asyncio.create_task(func())
# 创建协程,将协程封装到一个Task对象中并立即添加到事件循环的任务列表中,等待事件循环去执行(默认是就绪状态)。
task2 = asyncio.create_task(func())
print("main结束")
# 当执行某协程遇到IO操作时,会自动化切换执行其他任务。
# 此处的await是等待相对应的协程全都执行完毕并获取结果
ret1 = await task1
ret2 = await task2
print(ret1, ret2)
asyncio.run(main())
示例二:
import asyncio
async def func():
print(1)
await asyncio.sleep(2)
print(2)
return "返回值"
async def main():
print("main开始")
# 创建协程,将协程封装到Task对象中并添加到事件循环的任务列表中,等待事件循环去执行(默认是就绪状态)。
# 再调用
task_list = [
asyncio.create_task(func(), name="n1"),
asyncio.create_task(func(), name="n2")
]
print("main结束")
# 当执行某协程遇到IO操作时,会自动化切换执行其他任务。
# 此处的await是等待所有协程执行完毕,并将所有协程的返回值保存到done
# 如果设置了timeout值,则意味着此处最多等待的秒,完成的协程返回值写入到done中,未完成则写到pending中。
done, pending = await asyncio.wait(task_list, timeout=None)
print(done, pending)
asyncio.run(main())
示例三:
import asyncio
async def func():
print("执行协程函数内部代码")
# 遇到IO操作挂起当前协程(任务),等IO操作完成之后再继续往下执行。当前协程挂起时,事件循环可以去执行其他协程(任务)。
response = await asyncio.sleep(2)
print("IO请求结束,结果为:", response)
coroutine_list = [func(), func()]
# 错误:coroutine_list = [ asyncio.create_task(func()), asyncio.create_task(func()) ]
# 此处不能直接 asyncio.create_task,因为将Task立即加入到事件循环的任务列表,
# 但此时事件循环还未创建,所以会报错。
# 使用asyncio.wait将列表封装为一个协程,并调用asyncio.run实现执行两个协程
# asyncio.wait内部会对列表中的每个协程执行ensure_future,封装为Task对象。
done,pending = asyncio.run( asyncio.wait(coroutine_list) )
A
Futureis
a special low-level awaitable object that represents an
eventual result of an asynchronous operation.
Task继承Future,Task对象内部await结果的处理基于Future对象
示例一:
async def main():
# 获取当前事件循环
loop = asyncio.get_running_loop()
# # 创建一个任务(Future对象),这个任务什么都不干。
fut = loop.create_future()
# 等待任务最终结果(Future对象),没有结果则会一直等下去。
await fut
asyncio.run(main())
示例二:
import asyncio
async def set_after(fut):
await asyncio.sleep(2)
fut.set_result("666")
async def main():
# 获取当前事件循环
loop = asyncio.get_running_loop()
# 创建一个任务(Future对象),没绑定任何行为,则这个任务永远不知道什么时候结束。
fut = loop.create_future()
# 创建一个任务(Task对象),绑定了set_after函数,函数内部在2s之后,会给fut赋值。
# 即手动设置future任务的最终结果,那么fut就可以结束了。
await loop.create_task(set_after(fut))
# 等待 Future对象获取 最终结果,否则一直等下去
data = await fut
print(data)
asyncio.run(main())
Future对象本身函数进行绑定,所以想要让事件循环获取Future的结果,则需要手动设置。而Task对象继承了Future对象,其实就对Future进行扩展,他可以实现在对应绑定的函数执行完成之后,自动执行set_result
,从而实现自动结束。
虽然,平时使用的是Task对象,但对于结果的处理本质是基于Future对象来实现的。
扩展:支持 await 对象
语法的对象课成为可等待对象,所以 协程对象
、Task对象
、Future对象
都可以被成为可等待对象。
concurrent.futures
模块中的Future对象,和上面的Future对象没有关系(后面会结合)。
使用线程池、进程池实现异步操作时用到的对象。
import time
from concurrent.futures import Future
from concurrent.futures.thread import ThreadPoolExecutor
from concurrent.futures.process import ProcessPoolExecutor
def func(value):
time.sleep(1)
print(value)
# return 123
# 创建线程池
pool = ThreadPoolExecutor(max_workers=5)
# 创建进程池
# pool = ProcessPoolExecutor(max_workers=5)
for i in range(10):
fut = pool.submit(func, i)
print(fut)
以后可能会交叉使用(一部分协程一部分进程池/线程池)。例如:crm项目80%是基于协程异步编程+MySQL(不支持协程)【线程/进程做异步编程】
一般在程序开发中我们要么统一使用 asycio 的协程实现异步操作、要么都使用进程池和线程池实现异步操作。但如果 协程的异步
和 进程池/线程池的异步
混搭时,那么就会用到此功能了。
import time
import asyncio
import concurrent.futures
def func1():
# 某个耗时操作
time.sleep(2)
return "SC"
async def main():
loop = asyncio.get_running_loop()
# 1. Run in the default loop's executor ( 默认ThreadPoolExecutor )
# 第一步:内部会先调用 ThreadPoolExecutor 的 submit 方法去线程池中申请一个线程去执行func1函数,并返回一个concurrent.futures.Future对象
# 第二步:调用asyncio.wrap_future将concurrent.futures.Future对象包装为asycio.Future对象。
# 因为concurrent.futures.Future对象不支持await语法,所以需要包装为 asycio.Future对象 才能使用。
fut = loop.run_in_executor(None, func1)
result = await fut
print('default thread pool', result)
# 2. Run in a custom thread pool:
# with concurrent.futures.ThreadPoolExecutor() as pool:
# result = await loop.run_in_executor(
# pool, func1)
# print('custom thread pool', result)
# 3. Run in a custom process pool:
# with concurrent.futures.ProcessPoolExecutor() as pool:
# result = await loop.run_in_executor(
# pool, func1)
# print('custom process pool', result)
asyncio.run(main())
案例:asyncio+不支持异步的模块
import asyncio
import requests
async def download_image(url):
# 发送网络请求,下载图片(遇到网络下载图片的IO请求,自动化切换到其他任务)
print("开始下载:", url)
loop = asyncio.get_event_loop()
# requests模块默认不支持异步操作,所以就使用线程池来配合实现了。
future = loop.run_in_executor(None, requests.get, url)
response = await future
print('下载完成')
# 图片保存到本地文件
file_name = url.rsplit('_')[-1]
with open(file_name, mode='wb') as file_object:
file_object.write(response.content)
if __name__ == '__main__':
url_list = [
'https://c-ssl.duitang.com/uploads/blog/202110/26/20211026141603_cb6eb.jpg',
'https://c-ssl.duitang.com/uploads/blog/202110/22/20211022063257_4b93d.jpg',
'https://c-ssl.duitang.com/uploads/blog/202109/21/20210921165524_d1074.jpg'
]
tasks = [download_image(url) for url in url_list]
loop = asyncio.get_event_loop()
loop.run_until_complete( asyncio.wait(tasks) )
什么是异步迭代器?
实现了
__aiter__()
和__anext__()
方法的对象。__anext__
必须返回一个awaitable
对象。async for
会处理异步迭代器的__anext__()
方法所返回的可等待对象,直到其引发一个StopAsyncIteration
异常。由PEP 492
引入。什么是异步可迭代对象?
可在
async for
语句中被使用的对象。必须通过它的__aiter__()
方法返回一个asynchronous iterator
。由PEP 492
引入。
import asyncio
class Reader(object):
""" 自定义异步迭代器(同时也是异步可迭代对象) """
def __init__(self):
self.count = 0
async def readline(self):
# await asyncio.sleep(1)
self.count += 1
if self.count == 100:
return None
return self.count
def __aiter__(self):
return self
async def __anext__(self):
val = await self.readline()
if val == None:
raise StopAsyncIteration
return val
async def func():
# 创建异步可迭代对象
async_iter = Reader()
# async for 必须要放在async def函数内,否则语法错误。
async for item in async_iter:
print(item)
asyncio.run(func())
此种对象通过定义
__aenter__()
和__aexit__()
方法来对async with
语句中的环境进行控制。由PEP 492
引入。
import asyncio
class AsyncContextManager:
def __init__(self):
self.conn = conn
async def do_something(self):
# 异步操作数据库
return 666
async def __aenter__(self):
# 异步链接数据库
self.conn = await asyncio.sleep(1)
return self
async def __aexit__(self, exc_type, exc, tb):
# 异步关闭数据库链接
await asyncio.sleep(1)
async def func():
async with AsyncContextManager() as f:
result = await f.do_something()
print(result)
asyncio.run(func())
是asyncio事件循环的替代方案。事件循环效率 > 默认asyncio事件循环效率。
pip install uvloop
在项目中想要使用uvloop替换asyncio的事件循环也非常简单,只要在代码前添加以下代码:
import asyncio
import uvloop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
# 编写asyncio的代码,与之前写的代码一致。
# 内部的事件循环自动化会变为uvloop
asyncio.run(...)
当通过python去操作redis时,链接、设置值、获取值 这些都涉及网络IO请求,使用asycio异步的方式可以在IO等待时去做一些其他任务,从而提升性能。
安装Python异步操作redis模块
pip install aioredis
示例一:异步操作redis
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import asyncio
import aioredis
async def execute(address, password):
print("开始执行", address)
# 网络IO操作:创建redis连接
redis = await aioredis.create_redis(address, password=password)
# 网络IO操作:在redis中设置哈希值car,内部在设三个键值对,即: redis = { car:{key1:1,key2:2,key3:3}}
await redis.hmset_dict('car', key1=1, key2=2, key3=3)
# 网络IO操作:去redis中获取值
result = await redis.hgetall('car', encoding='utf-8')
print(result)
redis.close()
# 网络IO操作:关闭redis连接
await redis.wait_closed()
print("结束", address)
asyncio.run(execute('redis://47.93.4.198:6379', "root12345"))
示例二:连接多个redis做操作(遇到IO会切换其他任务,提供了性能)
import asyncio
import aioredis
async def execute(address, password):
print("开始执行", address)
# 网络IO操作:先去连接 47.93.4.197:6379,遇到IO则自动切换任务,去连接47.93.4.198:6379
redis = await aioredis.create_redis_pool(address, password=password)
# 网络IO操作:遇到IO会自动切换任务
await redis.hmset_dict('car', key1=1, key2=2, key3=3)
# 网络IO操作:遇到IO会自动切换任务
result = await redis.hgetall('car', encoding='utf-8')
print(result)
redis.close()
# 网络IO操作:遇到IO会自动切换任务
await redis.wait_closed()
print("结束", address)
task_list = [
execute('redis://47.93.4.197:6379', "root12345"),
execute('redis://47.93.4.198:6379', "root12345")
]
asyncio.run(asyncio.wait(task_list))
当通过python去操作MySQL时,连接、执行SQL、关闭都涉及网络IO请求,使用asycio异步的方式可以在IO等待时去做一些其他任务,从而提升性能。
安装Python异步操作redis模块
pip install aiomysql
示例一:
import asyncio
import aiomysql
async def execute():
# 网络IO操作:连接MySQL
conn = await aiomysql.connect(host='127.0.0.1', port=3306, user='root', password='root', db='mysql', )
# 网络IO操作:创建CURSOR
cur = await conn.cursor()
# 网络IO操作:执行SQL
await cur.execute("SELECT Host,User FROM user")
# 网络IO操作:获取SQL结果
result = await cur.fetchall()
print(result)
# 网络IO操作:关闭链接
await cur.close()
conn.close()
asyncio.run(execute())
示例二:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import asyncio
import aiomysql
async def execute(host, password):
print("开始", host)
# 网络IO操作:先去连接 47.93.40.197,遇到IO则自动切换任务,去连接47.93.40.198:6379
conn = await aiomysql.connect(host=host, port=3306, user='root', password=password, db='mysql')
# 网络IO操作:遇到IO会自动切换任务
cur = await conn.cursor()
# 网络IO操作:遇到IO会自动切换任务
await cur.execute("SELECT Host,User FROM user")
# 网络IO操作:遇到IO会自动切换任务
result = await cur.fetchall()
print(result)
# 网络IO操作:遇到IO会自动切换任务
await cur.close()
conn.close()
print("结束", host)
task_list = [
execute('47.93.40.197', "root"),
execute('47.93.41.197', "root")
]
asyncio.run(asyncio.wait(task_list))
FastAPI是一款用于构建API的高性能web框架,框架基于Python3.6+的 type hints搭建。
接下里的异步示例以FastAPI和uvicorn来讲解(uvicorn是一个支持异步的asgi)。
安装FastAPI web 框架:
pip install fastapi
安装uvicorn,本质上为web提供socket server的支持的asgi(一般支持异步称asgi、不支持异步称wsgi):
pip install uvicorn
示例:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import asyncio
import uvicorn
import aioredis
from aioredis import Redis
from fastapi import FastAPI
app = FastAPI()
# 创建redis连接池
REDIS_POOL = aioredis.ConnectionsPool('redis://47.193.14.198:6379', password="root123", minsize=1, maxsize=10)
@app.get("/")
def index():
""" 普通操作接口 """
return {"message": "Hello World"}
@app.get("/red")
async def red():
""" 异步操作接口 """
print("请求来了")
await asyncio.sleep(3)
# 连接池获取一个连接
conn = await REDIS_POOL.acquire()
redis = Redis(conn)
# 设置值
await redis.hmset_dict('car', key1=1, key2=2, key3=3)
# 读取值
result = await redis.hgetall('car', encoding='utf-8')
print(result)
# 连接归还连接池
REDIS_POOL.release(conn)
return result
if __name__ == '__main__':
uvicorn.run("luffy:app", host="127.0.0.1", port=5000, log_level="info")
在编写爬虫应用时,需要通过网络IO去请求目标数据,这种情况适合使用异步编程来提升性能,接下来我们使用支持异步编程的aiohttp模块来实现。
安装aiohttp模块
pip install aiohttp
示例:
import aiohttp
import asyncio
async def fetch(session, url):
print("发送请求:", url)
async with session.get(url, verify_ssl=False) as response:
text = await response.text()
print("得到结果:", url, len(text))
async def main():
async with aiohttp.ClientSession() as session:
url_list = [
'https://python.org',
'https://www.baidu.com ',
'https://www.pythonav.com'
]
tasks = [asyncio.create_task(fetch(session, url)) for url in url_list]
await asyncio.wait(tasks)
if __name__ == '__main__':
asyncio.run(main())